Advertisement

Biotechnology Letters

, Volume 41, Issue 12, pp 1423–1431 | Cite as

Deletion of Gcw13 represses autophagy in Pichia pastoris cells grown in methanol medium with sufficient amino acids

  • Chengjuan Zou
  • Pan Wang
  • Shuli Liang
  • Ying LinEmail author
Original Research Paper

Abstract

Objective

The purpose of this article is to study the underlying cause of the induction of autophagy in Pichia pastoris cells grown in amino acid-rich methanol medium during methanol adaptation.

Results

Autophagy was induced in P. pastoris GS115 when cells were grown in amino acid-rich methanol medium. Transcriptome analysis revealed that genes involved in amino acid biosynthesis were upregulated. The deletion of Gcw13, a GPI-anchored protein that plays a role in the endocytosis of the general amino acid permease Gap1, resulted in the inhibition of autophagy, the activation of TORC1 and an increase in the uptake of glutamine and asparagine in methanol-grown cells.

Conclusions

Our results demonstrated that the autophagy induced in P. pastoris cells grown in amino acid-rich methanol medium was nitrogen source independent and may be due to a Gcw13-dependent decrease in amino acid uptake during methanol adaptation.

Keywords

Pichia pstoris Autophagy Amino acid starvation TORC1 Gcw13 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 31170031). The funding source had no role in this study.

Supplementary materials

Supplementary Figure 1—The effect of ATG1 deletion on methanol-grown GS115. (a) Identification of ATG1 deletion using viability assay. atg1Δ strain loss viability under amino acid starvation. (b) The effect of ATG1 deletion on the growth. (c) The effect of ATG1 deletion on the expression of other ATG genes.

Supplementary Figure 2—Depletion of glutamine and asparagine in BMMY medium. P. pastoris cells were grown in BMMY medium for 12 h. The concentration of glutamine and asparagine in the medium was determined using the method reported previously (Zou et al. 2018). Data are presented as mean ± SD, n = 3. ***, p < 0.001.

Supplementary Table 1—Strains used in this study.

Supplementary Table 2—Primers used in this study.

Supplementary Table 3—Differentially expressed genes between methanol-grown and glycerol-grown GS115.

Supplementary Table 4—Genes involved in amino acid biosynthesis pathway.

Supplementary Table 5—Gene ontology enrichment results.

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflict of interest.

Supplementary material

10529_2019_2744_MOESM1_ESM.tif (1.8 mb)
Supplementary file1 (TIFF 1823 kb)
10529_2019_2744_MOESM2_ESM.tif (588 kb)
Supplementary file2 (TIFF 588 kb)
10529_2019_2744_MOESM3_ESM.xlsx (10 kb)
Supplementary file3 (XLSX 10 kb)
10529_2019_2744_MOESM4_ESM.xlsx (10 kb)
Supplementary file4 (XLSX 10 kb)
10529_2019_2744_MOESM5_ESM.xlsx (412 kb)
Supplementary file5 (XLSX 411 kb)
10529_2019_2744_MOESM6_ESM.xlsx (20 kb)
Supplementary file6 (XLSX 19 kb)
10529_2019_2744_MOESM7_ESM.xlsx (25 kb)
Supplementary file7 (XLSX 24 kb)

References

  1. Babbitt SE, Altenhofen L, Cobbold SA, Istvan ES, Fennell C, Doerig C, Llinás M, Goldberg DE (2012) Plasmodium falciparum responds to amino acid starvation by entering into a hibernatory state. Proc Natl Acad Sci USA 109(47):E3278–E3287CrossRefGoogle Scholar
  2. Beck T, Schmidt A, Hall MN (1999) Starvation induces vacuolar targeting and degradation of the tryptophan permease in yeast. J Cell Biol 146(6):1227–1238.  https://doi.org/10.1083/jcb.146.6.1227 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Cheong H, Klionsky DJ (2008) Biochemical methods to monitor autophagy-related processes in yeast. Methods Enzymol 451:1–26.  https://doi.org/10.1016/S0076-6879(08)03201-1 CrossRefPubMedGoogle Scholar
  4. Collart MA, Oliviero S (2001) Preparation of yeast RNA. Curr Protoc Mol Biol 23:131–135.  https://doi.org/10.1002/0471142727.mb1312s23 CrossRefGoogle Scholar
  5. Conrad M, Schothorst J, Kankipati HN, Van Zeebroeck G, Rubiotexeira M, Thevelein JM (2014) Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 38(2):254–299.  https://doi.org/10.1111/1574-6976.12065 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Edinger AL, Thompson CB (2002) Akt maintains cell size and survival by increasing mtor-dependent nutrient uptake. Mol Biol Cell 13(7):2276–2288.  https://doi.org/10.1091/mbc.01-12-0584 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Gellissen G (2000) Heterologous protein production in methylotrophic yeasts. Appl Microbiol Biotechnol 54(6):741–750.  https://doi.org/10.1007/s002530000464 CrossRefPubMedGoogle Scholar
  8. Houard S, Heinderyckx M, Bollen A (2002) Engineering of non-conventional yeasts for efficient synthesis of macromolecules: the methylotrophic genera. Biochimie 84(11):1089–1093.  https://doi.org/10.1016/S0300-9084(02)00011-1 CrossRefPubMedGoogle Scholar
  9. Juturu V, Wu JC (2018) Heterologous protein expression in Pichia pastoris: latest research progress and applications. ChemBioChem 19(1):7–21.  https://doi.org/10.1002/cbic.201700460 CrossRefPubMedGoogle Scholar
  10. Klionsky DJ, Cuervo AM, Seglen PO (2007) Methods for monitoring autophagy from yeast to human. Autophagy 3(3):181–206.  https://doi.org/10.4161/auto.3678 CrossRefPubMedGoogle Scholar
  11. Liang S, Wang B, Pan L, Ye Y, He M, Han S, Zheng S, Wang X, Lin Y (2012) Comprehensive structural annotation of Pichia pastoris transcriptome and the response to various carbon sources using deep paired-end RNA sequencing. BMC Genomics 13(1):738.  https://doi.org/10.1186/1471-2164-13-738 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Liang S, Zou C, Lin Y, Zhang X, Ye Y (2013) Identification and characterization of PGCW14: a novel, strong constitutive promoter of Pichia pastoris. Biotechnol Lett 35(11):1865–1871.  https://doi.org/10.1007/s10529-013-1265-8 CrossRefPubMedGoogle Scholar
  13. Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D, Oppliger W, Jenoe P, Hall MN (2002) Two tor complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 10(3):457–468.  https://doi.org/10.1016/S1097-2765(02)00636-6 CrossRefPubMedGoogle Scholar
  14. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat Methods 5(7):621–628.  https://doi.org/10.1038/nmeth.1226 CrossRefGoogle Scholar
  15. Natarajan K, Meyer MR, Jackson BM, Slade D, Roberts C, Hinnebusch AG, Marton MJ (2001) Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol Cell Biol 21(13):4347–4368.  https://doi.org/10.1128/mcb.21.13.4347-4368.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Noda T (2008) Viability assays to monitor yeast autophagy. Methods Enzymol 451:27–32.  https://doi.org/10.1016/S0076-6879(08)03202-3 CrossRefPubMedGoogle Scholar
  17. Noda T, Ohsumi Y (1998) Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J Biol Chem 273(7):3963–3966.  https://doi.org/10.1074/jbc.273.7.3963 CrossRefPubMedGoogle Scholar
  18. Onodera J, Ohsumi Y (2005) Autophagy is required for maintenance of amino acid levels and protein synthesis under nitrogen starvation. J Biol Chem 280(36):31582–31586.  https://doi.org/10.1074/jbc.M506736200 CrossRefPubMedGoogle Scholar
  19. Penninckx M (2000) A short review on the role of glutathione in the response of yeasts to nutritional, environmental, and oxidative stresses. Enzyme Microb Technol 26(9):737–742.  https://doi.org/10.1016/S0141-0229(00)00165-4 CrossRefPubMedGoogle Scholar
  20. Prielhofer R, Cartwright SP, Graf AB, Valli M, Bill RM, Mattanovich D, Gasser B (2015) Pichia pastoris regulates its gene-specific response to different carbon sources at the transcriptional, rather than the translational, level. BMC Genomics 16(1):167.  https://doi.org/10.1186/s12864-015-1393-8 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Robinson MD, McCarthy DJ, Smyth GK (2010) Edger: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140.  https://doi.org/10.1093/bioinformatics/btp616 CrossRefGoogle Scholar
  22. Tesnière C, Brice C, Blondin B (2015) Responses of Saccharomyces cerevisiae to nitrogen starvation in wine alcoholic fermentation. Appl Microbiol Biotechnol 99(17):7025–7034.  https://doi.org/10.1007/s00253-015-6810-z CrossRefPubMedGoogle Scholar
  23. Thomas G, Sabatini DM, Hall MN (2012) Tor: target of rapamycin. Springer Science & Business Media, BerlinGoogle Scholar
  24. Tomlins AM, Ben-Rached F, Williams RA, Proto WR, Coppens I, Ruch U, Gilberger TW, Coombs GH, Mottram JC, Müller S (2013) Plasmodium falciparum atg8 implicated in both autophagy and apicoplast formation. Autophagy 9(10):1540–1552CrossRefGoogle Scholar
  25. Valenzuela L, Aranda C, González A (2001) Tor modulates Gcn4-dependent expression of genes turned on by nitrogen limitation. J Bacteriol 183(7):2331–2334.  https://doi.org/10.1128/JB.183.7.2331-2334.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  26. van der Klei IJ, Yurimoto H, Sakai Y, Veenhuis M (2006) The significance of peroxisomes in methanol metabolism in methylotrophic yeast. Biochim Biophys Acta Mol Cell Res 1763(12):1453–1462.  https://doi.org/10.1016/j.bbamcr.2006.07.016 CrossRefGoogle Scholar
  27. van Zutphen T, Baerends RJ, Susanna KA, de Jong A, Kuipers OP, Veenhuis M, van der Klei IJ (2010) Adaptation of Hansenula polymorpha to methanol: a transcriptome analysis. BMC Genomics 11(1):1.  https://doi.org/10.1186/1471-2164-11-1 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, Kong L, Gao G, Li C-Y, Wei L (2011) Kobas 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res 39(2):316–322.  https://doi.org/10.1093/nar/gkr483 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Yamashita S, Yurimoto H, Murakami D, Yoshikawa M, Oku M, Sakai Y (2009) Lag-phase autophagy in the methylotrophic yeast Pichia pastoris. Genes Cells 14(7):861–870.  https://doi.org/10.1111/j.1365-2443.2009.01316.x CrossRefPubMedGoogle Scholar
  30. Zhang L, Liang S, Zhou X, Jin Z, Jiang F, Han S, Zheng S, Lin Y (2013) Screening for glycosylphosphatidylinositol-modified cell wall proteins in Pichia pastoris and their recombinant expression on the cell surface. Appl Environ Microbiol 79(18):5519–5526.  https://doi.org/10.1128/AEM.00824-13 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Zou C, Wang P, Liang S, Han S, Zheng S, Lin Y (2018) Deletion of the GCW13 gene derepresses Gap1-dependent uptake of amino acids in Pichia pastoris grown on methanol as the sole carbon source. Biochem Biophys Res Commun 501(1):226–231.  https://doi.org/10.1016/j.bbrc.2018.04.221 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Biology and Biological EngineeringSouth China University of Technology, Guangzhou Higher Education Mega CentreGuangzhouChina
  2. 2.Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
  3. 3.Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina

Personalised recommendations