Advertisement

Improved yield of rhEPO in CHO cells with synthetic 5′ UTR

  • Alan Costello
  • Nga T. Lao
  • Niall Barron
  • Martin Clynes
Original Research Paper

Abstract

The impact of local structure on mRNA translation is not well-defined pertaining to the 5′ UTR. Reports suggest structural remodelling of the 5′ UTR can significantly influence mRNA translation both in cis and trans however a new layer of complexity has been applied to this model with the now known reversible post-transcriptional chemical modification of RNA. N6-methyladenosine (m6A) is the most abundant internal base modification in mammalian mRNA. It has been reported that mRNAs harbouring m6A motifs in their 5′ UTR have improved translation efficiency. The present study evaluated the addition of putative m6A motifs to the 5′ UTR of a model recombinant human therapeutic glycoprotein, Erythropoietin (EPO), in a direct comparison with an A to T mutant and a no adenosine control. The m6A construct yielded significantly improved EPO titer in transient batch culture over no adenosine and m6T controls by 2.84 and 2.61-fold respectively. This study highlights that refinement of transgene RNA elements can yield significant improvements to protein titer.

Keywords

5′ UTR N6-methyladenosine m6CHO Bioprocessing Synthetic biology 

Notes

Funding

This work was conducted under the financial support of Scientific Foundation of Ireland (SFI) Grant Nos. [13/IA/1963] and [13/IA/1841].

References

  1. Cox DBT, Gootenberg JS, Abudayyeh OO, Franklin B, Kellner MJ, Joung J, Zhang F (2017) RNA editing with CRISPR-Cas13. Science 358(6366):1019–1027CrossRefGoogle Scholar
  2. Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M (2012) Topology of the human and mouse m 6 A RNA methylomes revealed by m 6 A-seq. Nature 485(7397):201CrossRefGoogle Scholar
  3. Du H, Zhao Y, He J, Zhang Y, Xi H, Liu M, Ma J, Wu L (2016) YTHDF2 destabilizes m 6 A-containing RNA through direct recruitment of the CCR4–NOT deadenylase complex. Nat Commun 7:12626CrossRefGoogle Scholar
  4. Ferizi M, Leonhardt C, Meggle C, Aneja MK, Rudolph C, Plank C, Rädler JO (2015) Stability analysis of chemically modified mRNA using micropattern-based single-cell arrays. Lab Chip 15(17):3561–3571CrossRefGoogle Scholar
  5. Fu Y, Dominissini D, Rechavi G, He C (2014) Gene expression regulation mediated through reversible m6A RNA methylation. Nat Rev Genet 15(5):293–306CrossRefGoogle Scholar
  6. Grens A, Scheffler IE (1990) The 5′- and 3′-untranslated regions of ornithine decarboxylase mRNA affect the translational efficiency. J Biol Chem 265(20):11810–11816PubMedGoogle Scholar
  7. He C (2010) Grand challenge commentary: RNA epigenetics? Nat Chem Biol 6(12):863CrossRefGoogle Scholar
  8. Holtkamp S, Kreiter S, Selmi A, Simon P, Koslowski M, Huber C, Tureci O, Sahin U (2006) Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood 108(13):4009–4017CrossRefGoogle Scholar
  9. Huang H, Weng H, Sun W, Qin X, Shi H, Wu H, Zhao BS, Mesquita A, Liu C, Yuan CL (2018) Recognition of RNA N 6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol 20(3):285CrossRefGoogle Scholar
  10. Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, Yi C, Lindahl T, Pan T, Yang Y (2011) N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 7(12):885CrossRefGoogle Scholar
  11. Kozak M (1986) Influences of mRNA secondary structure on initiation by eukaryotic ribosomes. Proc Natl Acad Sci USA 83(9):2850–2854CrossRefGoogle Scholar
  12. Leppek K, Das R, Barna M (2018) Functional 5′ UTR mRNA structures in eukaryotic translation regulation and how to find them. Nat Rev Mol Cell Biol 19(3):158CrossRefGoogle Scholar
  13. Li F, Zhao D, Wu J, Shi Y (2014) Structure of the YTH domain of human YTHDF2 in complex with an m 6 A mononucleotide reveals an aromatic cage for m 6 A recognition. Cell Res 24(12):1490CrossRefGoogle Scholar
  14. Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, Jia G, Yu M, Lu Z, Deng X (2014) A METTL3–METTL14 complex mediates mammalian nuclear RNA N 6-adenosine methylation. Nat Chem Biol 10(2):93CrossRefGoogle Scholar
  15. Liu N, Dai Q, Zheng G, He C, Parisien M, Pan T (2015) N 6-methyladenosine-dependent RNA structural switches regulate RNA–protein interactions. Nature 518(7540):560CrossRefGoogle Scholar
  16. Manning KS, Cooper TA (2017) The roles of RNA processing in translating genotype to phenotype. Nat Rev Mol Cell Biol 18(2):102CrossRefGoogle Scholar
  17. Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149(7):1635–1646CrossRefGoogle Scholar
  18. Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA, Elemento O, Pestova TV, Qian S, Jaffrey SR (2015) 5′ UTR m 6 A promotes cap-independent translation. Cell 163(4):999–1010CrossRefGoogle Scholar
  19. Morita S, Noguchi H, Horii T, Nakabayashi K, Kimura M, Okamura K, Sakai A, Nakashima H, Hata K, Nakashima K (2016) Targeted DNA demethylation in vivo using dCas9–peptide repeat and scFv–TET1 catalytic domain fusions. Nat Biotechnol 34(10):1060CrossRefGoogle Scholar
  20. Pichon X, Wilson LA, Stoneley M, Bastide A, King HA, Somers H, Wills AE (2012) RNA binding protein/RNA element interactions and the control of translation. Curr Protein Pept Sci 13(4):294–304CrossRefGoogle Scholar
  21. Ping X, Sun B, Wang L, Xiao W, Yang X, Wang W, Adhikari S, Shi Y, Lv Y, Chen Y (2014) Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res 24(2):177CrossRefGoogle Scholar
  22. Shi Z, Fujii K, Kovary KM, Genuth NR, Röst HL, Teruel MN, Barna M (2017) Heterogeneous ribosomes preferentially translate distinct subpools of mRNAs genome-wide. Mol Cell 67(1):71–83CrossRefGoogle Scholar
  23. Simsek D, Tiu GC, Flynn RA, Byeon GW, Leppek K, Xu AF, Chang HY, Barna M (2017) The mammalian ribo-interactome reveals ribosome functional diversity and heterogeneity. Cell 169(6):1051–1065CrossRefGoogle Scholar
  24. Stein I, Itin A, Einat P, Skaliter R, Grossman Z, Keshet E (1998) Translation of vascular endothelial growth factor mRNA by internal ribosome entry: implications for translation under hypoxia. Mol Cell Biol 18(6):3112–3119CrossRefGoogle Scholar
  25. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403(6765):41CrossRefGoogle Scholar
  26. Suzuki MM, Bird A (2008) DNA methylation landscapes: provocative insights from epigenomics. Nature Rev Genet 9(6):465CrossRefGoogle Scholar
  27. Topisirovic I, Svitkin YV, Sonenberg N, Shatkin AJ (2011) Cap and cap-binding proteins in the control of gene expression. Wiley Interdiscip Rev 2(2):277–298CrossRefGoogle Scholar
  28. Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, Fu Y, Parisien M, Dai Q, Jia G (2014) N 6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505(7481):117CrossRefGoogle Scholar
  29. Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, Weng X, Chen K, Shi H, He C (2015) N 6-methyladenosine modulates messenger RNA translation efficiency. Cell 161(6):1388–1399CrossRefGoogle Scholar
  30. Wei C, Gershowitz A, Moss B (1975) Methylated nucleotides block 5′ terminus of HeLa cell messenger RNA. Cell 4(4):379–386CrossRefGoogle Scholar
  31. Wesselhoeft RA, Kowalski PS, Anderson DG (2018) Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat Commun 9(1):2629CrossRefGoogle Scholar
  32. Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, Jin Y, Yang Y, Chen L, Wang Y (2017) Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res 27(5):626–641CrossRefGoogle Scholar
  33. Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang C, Li CJ, Vågbø CB, Shi Y, Wang W, Song S (2013) ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 49(1):18–29CrossRefGoogle Scholar
  34. Zhu T, Roundtree IA, Wang P, Wang X, Wang L, Sun C, Tian Y, Li J, He C, Xu Y (2014) Crystal structure of the YTH domain of YTHDF2 reveals mechanism for recognition of N6-methyladenosine. Cell Res 24(12):1493CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.National Institute for Cellular BiotechnologyDublin City UniversityDublinIreland
  2. 2.National Institute for Bioprocessing Research and TrainingDublinIreland
  3. 3.University College DublinDublin 4Ireland

Personalised recommendations