Advertisement

Comparative features between recombinant lipases CALA-like from U. maydis and CALA from C. antarctica in thermal stability and selectivity

  • Marcela Robles-Machuca
  • M. Martin del Campo
  • M. Ángeles Camacho-Ruiz
  • Enrique Ordaz
  • Edgar O. Zamora-González
  • Marcelo Müller-Santos
  • Jorge A. Rodríguez
Original Research Paper
  • 33 Downloads

Abstract

Objectives

Ustilago maydis lipase A (UMLA) expressed in Pichia pastoris was compared with Candida antarctica lipase A (CALA) to study its biochemical properties such as thermostability and selectivity.

Results

UMLA had similar behavior to its homologue CALA regarding the effect of pH and temperature on enzymatic activity, substrate preference and selectivity. Both lipases were active on insoluble triglycerides as well as natural oils and hydrolyzed preferably esters with short and medium acyl and alkyl chains. Both enzymes were slightly selective for the (S)-glycidyl butyrate enantiomer and had a remarkable preference for the sn-2 position of triglycerides. The optimal activity was 40 and 50 °C for UMLA and CALA, respectively. However, temperature had a greater effect on the stability of UMLA compared to CALA, observing a half-life at 50 °C of 2.07 h and 12.83 h, respectively.

Conclusions

UMLA shares some biochemical properties with CALA such as the sn-2 preference on triglyceride hydrolysis and transesterification. However, the high thermostability attributed to CALA was not observed in UMLA; this can be due to the lack of stabilization via AXXXA motifs in helices and fewer proline residues at the surface.

Keywords

Candida antarctica Lipase Pichia pastoris sn-2-Selectivity Thermostability Ustilago maydis 

Notes

Acknowledgements

Maria Marcela Robles-Machuca acknowledges the Doctoral fellowship received from The National Council of Science and Technology (CONACYT). This work was funded by SEP-CONACYT (242544-2014). The authors thank Ean Hundley from Peace Corps for revising the English manuscript.

Supporting information

Supplementary Table 1—Purification steps of the recombinant lipases. The lipolytic activity was monitored by PHIBLA method at 37 °C for 15 min using TG (8:0) for UMLA and TG (4:0) for CALA as substrates.

Supplementary Fig. 1—UMLA and CALA purity analysis by SDS-PAGE. a. Proteins in cell-free culture (line 1), ammonium sulfate precipitation (line 2), eluted UMLA fraction from Butyl-sepharose (line 3). b. Eluted CALA fraction from CM-Sepharose column (line 2). Molecular weight marker was Low range, Bio Rad (line 4a and 1b). SDS-PAGE (12%) gel under reducing conditions. Coomassie brilliant blue was used to stain the proteins.

Supplementary Fig. 2—Mass spectrum of recombinant UMLA (a) and CALA (b) proteins. Both enzymes after purification were analyzed by MALDI-TOF mass spectrometry. Intensity values were normalized.

Supplementary Fig. 3—Surface representation of UMLA (a) and CALA (b) structures. The structures are graphically depicted as the 180° rotated view, with the yellow surface corresponding to active site, the exposed prolines residues in red, and the sequence exposed AXXXA motifs in purple. Based on the crystallographic structure of UMLA (PDB ID: 3ZPX) and CALA (PDB ID: 2VEO).

Supplementary material

10529_2018_2630_MOESM1_ESM.doc (519 kb)
Electronic supplementary material 1 (DOC 519 kb)
10529_2018_2630_MOESM2_ESM.ppt (315 kb)
Electronic supplementary material 2 (PPT 315 kb)

References

  1. Borrelli G, Trono D (2015) Recombinant lipases and phospholipases and their use as biocatalysts for industrial applications. Int J Mol Sci 16:20774–20840CrossRefPubMedPubMedCentralGoogle Scholar
  2. Brundiek H, Saß S, Evitt A, Kourist R, Bornscheuer UT (2012) The short form of the recombinant CAL-A-type lipase UM03410 from the smut fungus Ustilago maydis exhibits an inherent trans-fatty acid selectivity. Appl Microbiol Biotechnol 94:141–150CrossRefPubMedGoogle Scholar
  3. Camacho-Ruiz MA, Mateos-Díaz JC, Carrière F, Rodriguez JA (2015) A broad pH range indicator-based spectrophotometric assay for true lipases using tributyrin and tricaprylin. J Lipid Res 56:1057–1067CrossRefPubMedCentralGoogle Scholar
  4. Cambon E et al (2008) Characterization of typo-, regio-, and stereo-selectivities of babaco latex lipase in aqueous and organic media. Biotechnol Lett 30:769–774CrossRefPubMedGoogle Scholar
  5. Chakravorty D, Parameswaran S, Dubey VK, Patra S (2011) In silico characterization of thermostable lipases. Extremophiles 15:89–103CrossRefPubMedGoogle Scholar
  6. de María PD, Carboni-Oerlemans C, Tuin B, Bargeman G, van Gemert R (2005) Biotechnological applications of Candida antarctica lipase A: state-of-the-art. J Mol Catal B-Enzym 37:36–46CrossRefGoogle Scholar
  7. Eom GT, Lee SH, Song BK, Chung K-W, Kim Y-W, Song JK (2013) High-level extracellular production and characterization of Candida antarctica lipase B in Pichia pastoris. J Biosci Bioeng 116:165–170CrossRefPubMedGoogle Scholar
  8. Ericsson DJ, Kasrayan A, Johansson P, Bergfors T, Sandström AG, Bäckvall J-E, Mowbray SL (2008) X-ray structure of Candida antarctica lipase A shows a novel lid structure and a likely mode of interfacial activation. J Mol Biol 376:109–119CrossRefPubMedGoogle Scholar
  9. Granon S, Semeriva M (1980) Effect of taurodeoxycholate, colipase and temperature on the interfacial inactivation of porcine pancreatic lipase. Eur J Biochem 111:117–124CrossRefPubMedGoogle Scholar
  10. Janes LE, Kazlauskas RJ (1997) Quick E. A fast spectrophotometric method to measure the enantioselectivity of hydrolases. J Org Chem 62:4560–4561CrossRefGoogle Scholar
  11. Kakugawa K, Shobayashi M, Suzuki O, Miyakawa T (2002a) Cloning, characterization, and expression of cDNA encoding a lipase from Kurtzmanomyces sp. I-11. Biosci Biotechnol Biochem 66:1328–1336CrossRefPubMedGoogle Scholar
  12. Kakugawa K, Shobayashi M, Suzuki O, Miyakawa T (2002b) Purification and characterization of a lipase from the glycolipid-producing yeast Kurtzmanomyces sp. I-11. Biosci Biotechnol Biochem 66:978–985CrossRefPubMedGoogle Scholar
  13. Kirk O, Christensen MW (2002) Lipases from Candida antarctica: unique biocatalysts from a unique origin. Org Process Res Dev 6:446–451CrossRefGoogle Scholar
  14. Kleiger G, Grothe R, Mallick P, Eisenberg D (2002) GXXXG and AXXXA: common α-helical interaction motifs in proteins, particularly in extremophiles. Biochemistry 41:5990–5997CrossRefPubMedGoogle Scholar
  15. Mateos J, Ruiz K, Rodriguez J, Cordova J, Baratti J (2007) Mapping substrate selectivity of lipases from thermophilic fungi. J Mol Catal B 49:104–112CrossRefGoogle Scholar
  16. Mendoza LD, Rodriguez JA, Leclaire J, Buono G, Fotiadu F, Carrière F, Abousalham A (2012) An ultraviolet spectrophotometric assay for the screening of sn-2-specific lipases using 1, 3-O-dioleoyl-2-O-α-eleostearoyl-sn-glycerol as substrate. J Lipid Res 53:185–194CrossRefPubMedPubMedCentralGoogle Scholar
  17. Muralidhar R, Chirumamilla R, Marchant R, Ramachandran V, Ward O, Nigam P (2002) Understanding lipase stereoselectivity. World J Microbiol Biotechnol 18:81–97CrossRefGoogle Scholar
  18. Neang PM, Subileau M, Perrier V, Dubreucq E (2013) Peculiar features of four enzymes of the CaLA superfamily in aqueous media: differences in substrate specificities and abilities to catalyze alcoholysis. J Mol Catal B 94:36–46CrossRefGoogle Scholar
  19. Pfeffer J, Richter S, Nieveler J, Hansen C-E, Rhlid RB, Schmid RD, Rusnak M (2006) High yield expression of Lipase A from Candida antarctica in the methylotrophic yeast Pichia pastoris and its purification and characterisation. Appl Microbiol Biotechnol 72:931–938CrossRefPubMedGoogle Scholar
  20. Reyes-Duarte D et al (2005) Conversion of a carboxylesterase into a triacylglycerol lipase by a random mutation. Angew Chem Int Ed 44:7553–7557CrossRefGoogle Scholar
  21. Rogalska E, Cudrey C, Ferrato F, Verger R (1993) Stereoselective hydrolysis of triglycerides by animal and microbial lipases. Chirality 5:24–30CrossRefPubMedGoogle Scholar
  22. Sandström AG, Engström K, Nyhlén J, Kasrayan A, Bäckvall J-E (2009) Directed evolution of Candida antarctica lipase A using an episomaly replicating yeast plasmid. Protein Eng Des Sel 22:413–420CrossRefPubMedGoogle Scholar
  23. Velasco-Lozano S, Rodríguez-González JA, Mateos-Díaz JC, Reyes-Duarte D, Favela-Torres E (2012) Catalytic profiles of lipolytic biocatalysts produced by filamentous fungi. Biocatal Biotransform 30:459–468CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Marcela Robles-Machuca
    • 1
  • M. Martin del Campo
    • 2
  • M. Ángeles Camacho-Ruiz
    • 2
  • Enrique Ordaz
    • 1
  • Edgar O. Zamora-González
    • 3
  • Marcelo Müller-Santos
    • 4
  • Jorge A. Rodríguez
    • 1
  1. 1.Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.CZapopanMexico
  2. 2.Fundamentos del Conocimiento, CUNorteUniversidad de GuadalajaraColotlánMexico
  3. 3.Departamento de Bienestar y Desarrollo Sustentable, CUNorteUniversidad de GuadalajaraColotlánMexico
  4. 4.Departamento de Bioquímica e Biologia Molecular, Setor de Ciências BiológicasUniversidade Federal do ParanáCuritibaBrazil

Personalised recommendations