Biotechnology Letters

, Volume 41, Issue 1, pp 69–77 | Cite as

Deletion of gene gnd encoding 6-phosphogluconate dehydrogenase promotes l-serine biosynthesis in a genetically engineered strain of Methylobacterium sp. MB200

  • Xian Li
  • Bo Wu
  • Kan Zhou
  • Chengjian Jiang
  • Peihong Shen
Original Research Paper



To identify potential target genes involved in l-serine biosynthesis in Methylobacterium sp. MB200 and to evaluate the gnd genetically-engineered strains for l-serine production.


Five genes that are not associated with the central metabolic pathway but with l-serine biosynthesis were identified from Methylobacterium sp. MB200 mutants. Gene gnd, encoding 6-phosphogluconate dehydrogenase (PGDH), was selected for further evaluation. The gnd deletion mutant showed a 600% increase in d-serine tolerance and an 80% decrease in PGDH activity compared to Methylobacterium sp. MB200. gnd over-expression did not affect d-serine tolerance, whereas it did increase enzyme-activity up to 136%. Additionally, analysis revealed that in Methylobacterium sp. MB200, l-serine inhibited PGDH activity. The deletion of gnd did not affect growth, whereas it did enhance the biosynthesis of l-serine, resulting in a 225% increase in production of l-serine compared to the wild-type.


gnd, one of the five genes identified here that is associated with l-serine synthesis, can be developed as a potential candidate for metabolic engineering to promote l-serine synthesis in Methylobacterium sp. MB200.


Methylobacterium l-Serine Metabolic engineering Gene deletion 6-Phosphogluconate dehydrogenase 



This project was supported by the National Nature Science Foundation of China (Grant No. 31160022).

Supporting information

Supplementary Fig. 1—Schematic diagram of construction of the gnd-deleted vector pk18mobSacB-gndLR.

Supplementary Fig. 2—TLC analysis of l-serine synthesis by Methylobacterium sp. MB200 and mutant strains.

Supplementary Fig. 3—PCR verification of the MB200Δgnd, MB200∆gnd(pCM80-gnd), and MB200(pCM80-gnd).

Supplementary Table 1—Bacterial strains, plasmids, and primers used in this study.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10529_2018_2615_MOESM1_ESM.tif (37 kb)
Supplementary material 1 (TIFF 36 kb)
10529_2018_2615_MOESM2_ESM.tif (14.7 mb)
Supplementary material 2 (TIFF 15034 kb)
10529_2018_2615_MOESM3_ESM.tif (8 mb)
Supplementary material 3 (TIFF 8162 kb)
10529_2018_2615_MOESM4_ESM.docx (18 kb)
Supplementary material 4 (DOCX 17 kb)


  1. Anthony C (2011) How half a century of research was required to understand bacterial growth on C1 and C2 compounds; the story of the serine cycle and the ethylmalonyl-CoA pathway. Sci Prog 94(Pt 2):109–137CrossRefGoogle Scholar
  2. Asechi M, Tomonaga S, Tachibana T, Li H, Hayamizu KD, Denbow DM, Furuse M (2006) Intracerebroventricular injection of l-serine analogs and derivatives induces sedative and hypnotic effects under an acute stressful condition in neonatal chicks. Behav Brain Res 170:71–77CrossRefGoogle Scholar
  3. Becker J, Wittmann C (2012) Systems and synthetic metabolic engineering for amino acid production-the heartbeat of industrial strain development. Curr Opin Biotechnol 23:718–726CrossRefGoogle Scholar
  4. Becker J, Klopprogge C, Zelder O, Heinzle E, Wittmann C (2005) Amplified expression of fructose 1,6-Bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the Pentose Phosphate Pathway and lysine production on different carbon sources. Appl Environ Microbiol 71:8587–8596CrossRefGoogle Scholar
  5. Chao H, Wu B, Shen P (2015) Overexpression of the methanol dehydrogenase gene mxaF in Methylobacterium sp. MB200 enhances l-serine. Lett Appl Microbiol 61:390–396CrossRefGoogle Scholar
  6. Chistoserdova L (2011) Modularity of methylotrophy, revisited. Environ Microbiol 13:2603–2622CrossRefGoogle Scholar
  7. Chistoserdova L, Chen SW, Lapidus A, Lidstrom ME (2003) Methylotrophy in Methlobacterium extorquens AM1 from a Genomic Point of View. J Bacteriol 185:2980–2987CrossRefGoogle Scholar
  8. Dennis JJ, Zylstra GJ (1998) Plasposons: modular self-cloning minitransposon derivatives for rapid genetic analysis of Gram-Negative bacterial genomes. Appl Environ Microbiol 64:2710–2715Google Scholar
  9. Dunlop RA, Cox PA, Banack SA, Rodgers KJ (2013) The non-protein amino acid BMAA is misincorporated into human proteins in place of l-serine causing protein misfolding and aggregation. PLoS ONE 8:e75376CrossRefGoogle Scholar
  10. Eggeling L (2007) L-Serine and Glycine. In: Wendisch VF (ed) Amino acid biosynthesis pathways, regulation and metabolic engineering. Microbiology monographs, vol 5. Springer, Berlin, pp 259–272CrossRefGoogle Scholar
  11. Harder W, Attwood MM, Quayle JR (1973) Methanol assimilation by Hyphomicrobium sp. J Gen Microbiol 78:155–163CrossRefGoogle Scholar
  12. Hochheim J, Kranz A, Krumbach K, Sokolowsky S, Eggeling L, Noack S, Bocola M, Bott M, Marienhagen J (2017) Mutations in MurE, the essential UDP-N-acetylmuramoylalanyl-d-glutamate 2,6-diaminopimelate ligase of Corynebacterium glutamicum: effect on l-lysine formation and analysis of systemic consequences. Biotechnol Lett 39:283–288CrossRefGoogle Scholar
  13. Hwang GH, Cho JY (2012) Implication of gluconate kinase activity in l-ornithine biosynthesis in Corynebacterium glutamicum. J Ind Microbiol Biotechnol 39:1869–1874CrossRefGoogle Scholar
  14. Izumi Y, Yoshida T, Miyazaki SS, Mitsunaga T, Ohshiro T, Shimao M, Miyata A, Tanabe T (1993) L-serine production by a methylotroph and its related enzymes. Appl Microbiol Biotechnol 39:427–432CrossRefGoogle Scholar
  15. Kisumi M, Komatsubara S, Chibata I (1977) Enhancement of isoleucine hydroxamate-mediated growth inhibition and improvement of isoleucine-producing strains of Serratia marcescens. Appl Environ Microbiol 34:647–653Google Scholar
  16. Lai S, Zhang Y, Liu S, Liang Y, Shang X, Chai X, Wen T (2012) Metabolic engineering and flux analysis of Corynebacterium glutamicum for l-serine production. Sci China Life Sci 55(4):283–290CrossRefGoogle Scholar
  17. Li Y, Chen GK, Tong XW, Zhang HT, Liu XG, Liu YH, Lu FP (2012) Construction of Escherichia coli strains producing l-serine from glucose. Biotechnol Lett 34(8):1525–1530CrossRefGoogle Scholar
  18. Marx CJ, Lidstrom ME (2001) Development of improved versatile broad-host-range vectors for use in methylotrophs and other Gram-negative bacteria. Microbiology 147:2065–2075CrossRefGoogle Scholar
  19. Marx A, Hans S, Möckel B, Bathe B, de Graaf AA, McCormack AC, Stapleton C, Burke K, O’Donohue M, Dunican LK (2003) Metabolic phenotype of phosphoglucose isomerase mutants of Corynebacterium glutamicum. J Biotechnol 104:185–197CrossRefGoogle Scholar
  20. Mascarenhas D, Ashworth DJ, Chen CS (1991) Deletion of pgi alters tryptophan biosynthesis in a genetically engineered strain of Escherichia coli. Appl Environ Microbiol 57:2995–2999Google Scholar
  21. Moritz B, Striegel K, de Graaf AA, Sahm H (2000) Kinetic properties of the glucose-6-phosphate and 6-phosphogluconate dehydrogenases from Corynebacterium glutamicum and their application for predicting pentose phosphate pathway flux in vivo. Eur J Biochem 267:3442–3452CrossRefGoogle Scholar
  22. Ohnishi J, Katahira R, Mitsuhashi S, Kakita S, Ikeda M (2005) A novel gnd mutation leading to increased l-lysine production in Corynebacterium glutamicum. FEMS Microbiol Lett 242:265–274CrossRefGoogle Scholar
  23. Peel D, Quayle JR (1961) Microbial growth on C1 compounds. I. Isolation and characterization of Pseudomonas AM1. Biochem J 81:465–469CrossRefGoogle Scholar
  24. Peters-Wendisch P, Stolz M, Etterich H, Kennerknecht N, Sahm H, Eggeling L (2005) Metabolic engineering of Corynebacterium glutamicum for l-serine production. Appl Environ Microbiol 71:7139–7144CrossRefGoogle Scholar
  25. Peyraud R, Schneider K, Kiefer P, Massou S, Vorholt JA, Portais JC (2011) Genome-scale reconstruction and system level investigation of the metabolic network of Methylobacterium extorquens AM1. BMC Syst Biol 5:1–22CrossRefGoogle Scholar
  26. Schrumpf B, Eggeling L, Sahm H (1992) Isolation and prominent characteristics of an l-lysine hyperproducing strain of Corynebacterium glutamicum. Appl Microbiol Biotechnol 37:566–571CrossRefGoogle Scholar
  27. Shen P, Wu B (2007) Over-expression of a hydroxypyruvate reductase in Methylobacterium sp. MB200 enhances glyoxylate accumulation. J Ind Microbiol Biotechnol 34:657–663CrossRefGoogle Scholar
  28. Shen P, Chao H, Jiang C, Long Z, Wang C, Wu B (2010) Enhancing Production of l-Serine by Increasing the glyA Gene Expression in Methylobacterium sp. MB200. Appl Microbiol Biotechnol 160:740–750Google Scholar
  29. Tereshina EV, Laskavy VN, Ivanenko SI (2015) Four components of the conjugated redox system in organisms: carbon, nitrogen, sulfur, oxygen. Biochem (Mosc) 80:1186–1200CrossRefGoogle Scholar
  30. Thomas SP, Shanmugasundaram S (1992) Amino-acid overproduction by analog resistant mutants of the nitrogen fixing cyanobacterium Anabaena sp. 287. Appl Biochem Biotechnol 37:111–121CrossRefGoogle Scholar
  31. Yin L, Zhao J, Chen C, Hu X, Wang X (2014) Enhancing the carbon flux and NADPH supply to increase l-isoleucine production in Corynebacterium glutamicum. Biotechnol Bioproc Eng 19:132–142CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Xian Li
    • 1
    • 2
  • Bo Wu
    • 3
  • Kan Zhou
    • 4
  • Chengjian Jiang
    • 1
  • Peihong Shen
    • 1
  1. 1.State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and TechnologyGuangxi UniversityNanningPeople’s Republic of China
  2. 2.Medical CollegeGuangxi UniversityNanningPeople’s Republic of China
  3. 3.Guangxi University for NationalitiesNanningPeople’s Republic of China
  4. 4.First affiliated hospital of medical CollegeShihezi UniversityShiheziPeople’s Republic of China

Personalised recommendations