Biotechnology Letters

, Volume 40, Issue 9–10, pp 1365–1376 | Cite as

PiggyBac transposon-mediated mutagenesis and application in yeast Komagataella phaffii

  • Jinxiang Zhu
  • Qiaoyun Zhu
  • Ruiqing Gong
  • Qin Xu
  • Menghao Cai
  • Tianyi Jiang
  • Xiangshan Zhou
  • Mian Zhou
  • Yuanxing Zhang
Original Research Paper



Around one-fourth of the Komagataella phaffii genes encode hypothetical proteins with unknown functions. However, lack of powerful tools for genetic screening in K. phaffii significantly limits the functional analysis of these unknown genes. Transposon mutagenesis has been utilized as an insertional mutagenesis tool in many other organisms and would be extremely valuable if it could be applied in K. phaffii.


In this study, we investigated in K. phaffii the transposition activity and efficiency of piggyBac (PB) transposon, a DNA transposon from the cabbage looper moth Trichoplusia ni through the integrated-plasmid system. We also designed a binary-plasmid system which could generate stable mutants. Finally we evaluated the quality of this mutagenesis system by a simple screening for functional genes involved in K. phaffii carbon catabolite repression.


Our results demonstrate that PB-mediated mutagenesis could be a feasible and useful tool for functional gene screening in K. phaffii.


Mutagenesis Komagataella phaffii piggyBac Transposon 



We gratefully acknowledge Prof. Li-Lin Du (National Institute of Biological Sciences, Beijing, China) for helpful suggestions. We thank Prof. Tian Xu (Institute of Developmental Biology and Molecular Medicine School of Life Sciences Fudan University, Shanghai, China) and the Sanger Institute Archives ( for providing piggyBac plasmids (pCMV-PBase and PB[SV40-neo]) and hyPBase expression vector (pCMV-hyPBase), respectively. We also thank Prof. James M. Cregg (Keck Graduate Institute of Applied Life Science) for providing JC303 strain.

Supporting information

Supplementary Table 1—Oligonucleotide primers used in this study.


This work was sponsored by National Natural Science Foundation of China (31600056); the Fundamental Research Funds for the central Universities (222201714021); Shanghai Chenguang Program (15CG27).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10529_2018_2592_MOESM1_ESM.docx (22 kb)
Supplementary material 1 (DOCX 22 kb)


  1. Barquist L, Boinett CJ, Cain AK (2013) Approaches to querying bacterial genomes with transposon-insertion sequencing. RNA Biol 10(7):1161–1169CrossRefPubMedPubMedCentralGoogle Scholar
  2. Chaudhuri RR, Morgan E, Peters SE, Pleasance SJ, Hudson DL, Davies HM, Wang J, van Diemen PM, Buckley AM, Bowen AJ, Pullinger GD, Turner DJ, Langridge GC, Turner AK, Parkhill J, Charles IG, Maskell DJ, Stevens MP (2013) Comprehensive assignment of roles for Salmonella typhimurium genes in intestinal colonization of food-producing animals. PLoS Genet 9(4):e1003456CrossRefPubMedPubMedCentralGoogle Scholar
  3. Cregg JM (2007) DNA-mediated transformation. Methods Mol Biol 389:27–42CrossRefPubMedGoogle Scholar
  4. Cregg JM, Barringer KJ, Hessler AY, Madden KR (1985) Pichia pastoris as a host system for transformations. Mol Cell Biol 5(12):3376–3385CrossRefPubMedPubMedCentralGoogle Scholar
  5. De Schutter K, Lin YC, Tiels P, Van Hecke A, Glinka S, Weber-Lehmann J, Rouzé P, Van de Peer Y, Callewaert N (2009) Genome sequence of the recombinant protein production host Pichia pastoris. Nat Biotechnol 27(6):561–566CrossRefPubMedGoogle Scholar
  6. Delic M, Mattanovich D, Gasser B (2013) Repressible promoters—a novel tool to generate conditional mutants in Pichia pastoris. Microb Cell Fact 12:6CrossRefPubMedPubMedCentralGoogle Scholar
  7. Ding S, Wu X, Li G, Han M, Zhuang Y, Xu T (2005) Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 122(3):473–483CrossRefPubMedGoogle Scholar
  8. Flick JS, Johnston M (1991) GRR1 of Saccharomyces cerevisiae is required for glucose repression and encodes a protein with leucine-rich repeats. Mol Cell Biol 11(10):5101–5112CrossRefPubMedPubMedCentralGoogle Scholar
  9. Hu H, Gao J, He J, Yu B, Zheng P, Huang Z, Mao X, Yu J, Han G, Chen D (2013) Codon optimization significantly improves the expression level of a keratinase gene in Pichia pastoris. PLoS ONE 8:e58393CrossRefPubMedPubMedCentralGoogle Scholar
  10. Johnson MA, Waterham HR, Ksheminska GP, Fayura LR, Cereghino JL, Stasyk OV, Veenhuis M, Kulachkovsky AR, Sibirny AA, Cregg JM (1999) Positive selection of novel peroxisome biogenesis-defective mutants of the yeast Pichia pastoris. Genetics 151(4):1379–1391PubMedPubMedCentralGoogle Scholar
  11. Kurtzman CP (2005) Description of Komagataella phaffii sp. nov. and the transfer of Pichia pseudopastoris to the methylotrophic yeast genus Komagataella. Int J Syst Evol Microbiol 55(Pt2):973–976CrossRefPubMedGoogle Scholar
  12. Larsen S, Weaver J, de Sa Campos K, Bulahan R, Nguyen J, Grove H, Huang A, Low L, Tran N, Gomez S et al (2013) Mutant strains of Pichia pastoris with enhanced secretion of recombinant proteins. Biotechnol Lett 35:1925–1935CrossRefPubMedGoogle Scholar
  13. Li J, Zhang JM, Li X, Suo F, Zhang MJ, Hou W, Han J, Du LL (2011) A piggyBac transposon-based mutagenesis system for the fission yeast Schizosaccharomyces pombe. Nucleic Acids Res 39(6):e40CrossRefPubMedPubMedCentralGoogle Scholar
  14. Lin Cereghino GP, Lin Cereghino J, Sunga AJ, Johnson MA, Lim M, Gleeson MA, Cregg JM (2001) New selectable marker/auxotrophic host strain combinations for molecular genetic manipulation of Pichia pastoris. Gene 263(1–2):159–169CrossRefPubMedGoogle Scholar
  15. Liu YG, Chen Y (2007) High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. Biotechniques 43(5):649–650CrossRefPubMedGoogle Scholar
  16. Näätsaari L, Mistlberger B, Ruth C, Hajek T, Hartner FS, Glieder A (2012) Deletion of the Pichia pastoris KU70 homologue facilitates platform strain generation for gene expression and synthetic biology. PLoS ONE 7:e39720CrossRefPubMedPubMedCentralGoogle Scholar
  17. Nazarko TY, Ozeki K, Till A, Ramakrishnan G, Lotfi P, Yan M, Subramani S (2014) Atg37 binds Atg30 or palmitoyl-CoA to regulate phagophore formation during pexophagy. J Cell Biol 204(4):541–557CrossRefPubMedPubMedCentralGoogle Scholar
  18. Nocon J, Steiger MG, Pfeffer M, Sohn SB, Kim TY, Maurer M, Rußmayer H, Pflügl S, Ask M, Haberhauer-Troyer C, Ortmayr K, Hann S, Koellensperger G, Gasser B, Lee SY, Mattanovich D (2014) Model based engineering of Pichia pastoris central metabolism enhances recombinant protein production. Metab Eng 24:129–138CrossRefPubMedPubMedCentralGoogle Scholar
  19. Ozcan S (2002) Two different signals regulate repression and induction of gene expression by glucose. J Biol Chem 277(49):46993–46997CrossRefPubMedGoogle Scholar
  20. Polupanov AS, Nazarko VY, Sibirny AA (2012) Gss1 protein of the methylotrophic yeast Pichia pastoris is involved in glucose sensing, pexophagy and catabolite repression. Int J Biochem Cell Biol 44(11):1906–1918CrossRefPubMedGoogle Scholar
  21. Rad R, Rad L, Wang W, Cadinanos J, Vassiliou G, Rice S, Campos LS, Yusa K, Banerjee R, Li MA, de la Rosa J, Strong A, Lu D, Ellis P, Conte N, Yang FT, Liu P, Bradley A (2010) PiggyBac transposon mutagenesis: a tool for cancer gene discovery in mice. Science 330(6007):1104–1107CrossRefPubMedPubMedCentralGoogle Scholar
  22. Ross-Macdonald P, Coelho PS, Roemer T, Agarwal S, Kumar A, Jansen R, Cheung KH, Sheehan A, Symoniatis D, Umansky L, Heidtman M, Nelson FK, Iwasaki H, Hager K, Gerstein M, Miller P, Roeder GS, Snyder M (1999) Large-scale analysis of the yeast genome by transposon tagging and gene disruption. Nature 402(6760):413–418CrossRefPubMedGoogle Scholar
  23. Sakai Y, Sawai T, Tani Y (1987) Isolation and characterization of a catabolite repression-insensitive mutant of a methanol yeast, Candida boidinii A5, producing alcohol oxidase in glucose-containing medium. Appl Environ Microbiol 53(8):1812–1818PubMedPubMedCentralGoogle Scholar
  24. Santangelo GM (2006) Glucose signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 70(1):253–282CrossRefPubMedPubMedCentralGoogle Scholar
  25. Schroder LA, Glick BS, Dunn WA (2007) Identification of pexophagy genes by restriction enzyme-mediated integration. Methods Mol Biol 389:203–218CrossRefPubMedGoogle Scholar
  26. Schwarzhans JP, Luttermann T, Geier M, Kalinowski J, Friehs K (2017) Towards systems metabolic engineering in Pichia pastoris. Biotechnol Adv 35(6):681–710CrossRefPubMedGoogle Scholar
  27. Shen W, Xue Y, Liu Y, Kong C, Wang X, Huang M, Cai M, Zhou X, Zhang Y, Zhou M (2016) A novel methanol-free Pichia pastoris system for recombinant protein expression. Microb Cell Fact 15(1):178CrossRefPubMedPubMedCentralGoogle Scholar
  28. Walsh G (2014) Biopharmaceutical benchmarks 2014. Nat Biotechnol 32(10):992–1000CrossRefPubMedGoogle Scholar
  29. Wang X, Wang Q, Wang J, Bai P, Shi L, Shen W, Zhou M, Zhou X, Zhang Y, Cai M (2016) Mit1 transcription factor mediates methanol signaling and regulates the alcohol oxidase 1 (AOX1) promoter in Pichia pastoris. J Biol Chem 291(12):6245–6261CrossRefPubMedPubMedCentralGoogle Scholar
  30. Wang J, Wang X, Shi L, Qi F, Zhang P, Zhang Y, Zhou X, Song Z, Cai M (2017) Methanol-independent protein expression by AOX1 promoter with trans-acting elements engineering and glucose-glycerol-shift induction in Pichia pastoris. Sci Rep 7:41850CrossRefPubMedPubMedCentralGoogle Scholar
  31. Waterham HR, Digan ME, Koutz PJ, Lair SV, Cregg JM (1997) Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene 186:37–44CrossRefPubMedGoogle Scholar
  32. Winston F (2008) EMS and UV mutagenesis in yeast. Curr Protoc Mol Biol 82:13Google Scholar
  33. Xu W, Shang Y, Zhu P, Zhai Z, He J, Huang K, Luo Y (2013) Randomly broken fragment PCR with 5′ end-directed adaptor for genome walking. Sci Rep 3:3465CrossRefPubMedPubMedCentralGoogle Scholar
  34. Yamada Y, Suzuki T, Matsuda M, Mikata K (1995) The phylogeny of Yamadazyma ohmeri (Etchells et Bell) Billon-Grand based on the partial sequences of 18S and 26S ribosomal RNAs: the proposal of Kodamaea gen. nov. (Saccharomycetaceae). Biosci Biotechnol Biochem 59(6):1172–1174CrossRefPubMedGoogle Scholar
  35. Yang J, Jiang W, Yang S (2009) mazF as a counter-selectable marker for unmarked genetic modification of Pichia pastoris. FEMS Yeast Res 9(4):600–609CrossRefPubMedGoogle Scholar
  36. Yusa K, Zhou L, Li MA, Bradley A, Craig NL (2011) A hyperactive piggyBac transposase for mammalian applications. Proc Natl Acad Sci USA 108(4):1531–1536CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiPeople’s Republic of China
  2. 2.Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB)ShanghaiPeople’s Republic of China
  3. 3.Roche R&D Center (China) Ltd.ShanghaiPeople’s Republic of China

Personalised recommendations