Biotechnology Letters

, Volume 40, Issue 9–10, pp 1419–1423 | Cite as

Plant growth-promoting bacterium Pseudomonas fluorescens FR1 secrets a novel type of extracellular polyhydroxybutyrate polymerase involved in abiotic stress response in plants

  • Margarita Stritzler
  • Ana Diez Tissera
  • Gabriela Soto
  • Nicolás AyubEmail author
Original Research Paper



Identification of novel microbial factors contributing to plant protection against abiotic stress.


The genome of plant growth-promoting bacterium Pseudomonas fluorescens FR1 contains a short mobile element encoding a novel type of extracellular polyhydroxybutyrate (PHB) polymerase (PhbC) associated with a type I secretion system. Genetic analysis using a phbC mutant strain and plants showed that this novel extracellular enzyme is related to the PHB production in planta and suggests that PHB could be a beneficial microbial compound synthesized during plant adaptation to cold stress.


Extracellular PhbC can be used as a new tool for improve crop production under abiotic stress.


Abiotic stress Extracellular Polyhydroxybutyrate (PHB) PHB polymerase (PhbC) Plants 


  1. Ayub ND, Pettinari MJ, Ruiz JA, Lopez NI (2004) A polyhydroxybutyrate-producing Pseudomonas sp. isolated from Antarctic environments with high stress resistance. Curr Microbiol 49(3):170–174. CrossRefPubMedGoogle Scholar
  2. Ayub ND, Julia Pettinari M, Mendez BS, Lopez NI (2006) Impaired polyhydroxybutyrate biosynthesis from glucose in Pseudomonas sp. 14-3 is due to a defective beta-ketothiolase gene. FEMS Microbiol Lett 264(1):125–131. CrossRefPubMedGoogle Scholar
  3. Ayub ND, Pettinari MJ, Mendez BS, Lopez NI (2007) The polyhydroxyalkanoate genes of a stress resistant Antarctic Pseudomonas are situated within a genomic island. Plasmid 58(3):240–248. CrossRefPubMedGoogle Scholar
  4. Ayub ND, Tribelli PM, Lopez NI (2009) Polyhydroxyalkanoates are essential for maintenance of redox state in the Antarctic bacterium Pseudomonas sp. 14-3 during low temperature adaptation. Extremophiles 13(1):59–66. CrossRefPubMedGoogle Scholar
  5. Eggers J, Steinbuchel A (2014) Impact of Ralstonia eutropha’s poly(3-Hydroxybutyrate) (PHB) Depolymerases and Phasins on PHB storage in recombinant Escherichia coli. Appl Environ Microbiol 80(24):7702–7709. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Fox AR, Soto G, Mozzicafreddo M, Garcia AN, Cuccioloni M, Angeletti M, Salerno JC, Ayub ND (2014) Understanding the function of bacterial and eukaryotic thiolases II by integrating evolutionary and functional approaches. Gene 533(1):5–10. CrossRefPubMedGoogle Scholar
  7. Fox AR, Soto G, Valverde C, Russo D, Lagares A Jr, Zorreguieta A, Alleva K, Pascuan C, Frare R, Mercado-Blanco J, Dixon R, Ayub ND (2016) Major cereal crops benefit from biological nitrogen fixation when inoculated with the nitrogen-fixing bacterium Pseudomonas protegens Pf-5 X940. Environ Microbiol 18(10):3522–3534. CrossRefPubMedGoogle Scholar
  8. Gerngross TU, Snell KD, Peoples OP, Sinskey AJ, Csuhai E, Masamune S, Stubbe J (1994) Overexpression and purification of the soluble polyhydroxyalkanoate synthase from Alcaligenes eutrophus: evidence for a required posttranslational modification for catalytic activity. Biochemistry 33(31):9311–9320CrossRefPubMedGoogle Scholar
  9. Jozefkowicz C, Brambilla S, Frare R, Stritzler M, Puente M, Piccinetti C, Soto G, Ayub N (2017) Microevolution rather than large genome divergence determines the effectiveness of legume-rhizobia symbiotic interaction under field conditions. J Mol Evol 85(3–4):79–83. CrossRefPubMedGoogle Scholar
  10. Lopez NI, Floccaria ME, Steinbüchel A, García AF, Méndez BS (1995) Effect of poly(3-hydroxybutyrate) (PHB) content on the starvation-survival of bacteria in natural waters. FEMS Microbiol Ecol 16(2):95–101. CrossRefGoogle Scholar
  11. Mavromatis K, Ivanova N, Barry K, Shapiro H, Goltsman E, McHardy AC, Rigoutsos I, Salamov A, Korzeniewski F, Land M, Lapidus A, Grigoriev I, Richardson P, Hugenholtz P, Kyrpides NC (2007) Use of simulated data sets to evaluate the fidelity of metagenomic processing methods. Nat Methods 4(6):495–500. CrossRefPubMedGoogle Scholar
  12. Moriconi V, Sellaro R, Ayub N, Soto G, Rugnone M, Shah R, Pathak GP, Gartner W, Casal JJ (2013) LOV-domain photoreceptor, encoded in a genomic island, attenuates the virulence of Pseudomonas syringae in light-exposed Arabidopsis leaves. Plant J 76(2):322–331. CrossRefPubMedGoogle Scholar
  13. Pascuan C, Fox AR, Soto G, Ayub ND (2015) Exploring the ancestral mechanisms of regulation of horizontally acquired nitrogenases. J Mol Evol 81(3–4):84–89. CrossRefPubMedGoogle Scholar
  14. Smithen M, Elustondo PA, Winkfein R, Zakharian E, Abramov AY, Pavlov E (2013) Role of polyhydroxybutyrate in mitochondrial calcium uptake. Cell Calcium 54(2):86–94. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Soto G, Setten L, Lisi C, Maurelis C, Mozzicafreddo M, Cuccioloni M, Angeletti M, Ayub ND (2012) Hydroxybutyrate prevents protein aggregation in the halotolerant bacterium Pseudomonas sp. CT13 under abiotic stress. Extremophiles 16(3):455–462. CrossRefPubMedGoogle Scholar
  16. Steinbuchel A, Hein S (2001) Biochemical and molecular basis of microbial synthesis of polyhydroxyalkanoates in microorganisms. Adv Biochem Eng Biotechnol 71:81–123PubMedGoogle Scholar
  17. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J (2016) NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 44(14):6614–6624. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Wittenborn EC, Jost M, Wei Y, Stubbe J, Drennan CL (2016) Structure of the catalytic domain of the class I polyhydroxybutyrate synthase from cupriavidus necator. J Biol Chem 291(48):25264–25277. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Yan Y, Yang J, Dou Y, Chen M, Ping S, Peng J, Lu W, Zhang W, Yao Z, Li H, Liu W, He S, Geng L, Zhang X, Yang F, Yu H, Zhan Y, Li D, Lin Z, Wang Y, Elmerich C, Lin M, Jin Q (2008) Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri A1501. Proc Natl Acad Sci USA 105(21):7564–7569. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de GenéticaCICVyA (INTA)Buenos AiresArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina

Personalised recommendations