Biotechnology Letters

, Volume 40, Issue 6, pp 907–914 | Cite as

Therapeutic applications of CRISPR/Cas9 system in gene therapy

  • Hasan Mollanoori
  • Shahram TeimourianEmail author


Gene therapy is based on the principle of the genetic manipulation of DNA or RNA for treating and preventing human diseases. The clustered regularly interspaced short palindromic repeats/CRISPR associated nuclease9 (CRISPR/Cas9) system, derived from the acquired immune system in bacteria and archaea, has provided a new tool for accurate manipulation of genomic sequence to attain a therapeutic result. The advantage of CRISPR which made it an easy and flexible tool for diverse genome editing purposes is that a single protein (Cas9) complex with 2 short RNA sequences, function as a site-specific endonuclease. Recently, application of CRISPR/Cas9 system has become popular for therapeutic aims such as gene therapy. In this article, we review the fundamental mechanisms of CRISPR-Cas9 function and summarize preclinical CRISPR-mediated gene therapy reports on a wide variety of disorders.


CRISPR/cas9 Gene therapy 


  1. Canver MC, Smith EC, Sher F, Pinello L, Sanjana NE, Shalem O, Chen DD, Schupp PG, Vinjamur DS, Garcia SP, Luc S, Kurita R, Nakamura Y, Fujiwara Y, Maeda T, Yuan GC, Zhang F, Orkin SH, Bauer DE (2015) BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature 527:192–197CrossRefPubMedPubMedCentralGoogle Scholar
  2. Chang CW, Lai YS, Westin E, Khodadadi-Jamayran A, Pawlik KM, Lamb LS Jr, Goldman FD, Townes TM (2015) Modeling human severe combined immunodeficiency and correction by CRISPR/Cas9-enhanced gene targeting. Cell Rep 12:1668–1677CrossRefPubMedGoogle Scholar
  3. Chang H, Yi B, Ma R, Zhang X, Zhao H, Xi Y (2016) CRISPR/cas9, a novel genomic tool to knock down microRNA in vitro and in vivo. Sci Rep 6:22312CrossRefPubMedPubMedCentralGoogle Scholar
  4. Chira S, Gulei D, Hajitou A, Zimta AA, Cordelier P, Berindan-Neagoe I (2017) CRISPR/Cas9: transcending the reality of genome editing. Mol Ther Nucl Acids 7:211–222CrossRefGoogle Scholar
  5. De Ravin SS, Li L, Wu X, Choi U, Allen C, Koontz S, Lee J, Theobald-Whiting N, Chu J, Garofalo M, Sweeney C, Kardava L, Moir S, Viley A, Natarajan P, Su L, Kuhns D, Zarember KA, Peshwa MV, Malech HL (2017) CRISPR-Cas9 gene repair of hematopoietic stem cells from patients with X-linked chronic granulomatous disease. Sci Transl Med 9:eaah3480CrossRefPubMedGoogle Scholar
  6. Dever DP, Bak RO, Reinisch A, Camarena J, Washington G, Nicolas CE, Pavel-Dinu M, Saxena N, Wilkens AB, Mantri S, Uchida N, Hendel A, Narla A, Majeti R, Weinberg KI, Porteus MH (2016) CRISPR/Cas9 beta-globin gene targeting in human haematopoietic stem cells. Nature 539:384–389CrossRefPubMedPubMedCentralGoogle Scholar
  7. El Refaey M, Xu L, Gao Y, Canan BD, Adesanya TMA, Warner SC, Akagi K, Symer DE, Mohler PJ, Ma J, Janssen PML, Han R (2017) In vivo genome editing restores dystrophin expression and cardiac function in Dystrophic mice. Circ Res 121:923–929CrossRefPubMedPubMedCentralGoogle Scholar
  8. Fineran PC, Dy RL (2014) Gene regulation by engineered CRISPR-Cas systems. Curr Opin Microbiol 18:83–89CrossRefPubMedGoogle Scholar
  9. Firth AL, Menon T, Parker GS, Qualls SJ, Lewis BM, Ke E, Dargitz CT, Wright R, Khanna A, Gage FH, Verma IM (2015) Functional gene correction for cystic fibrosis in lung epithelial cells generated from patient iPSCs. Cell Rep 12:1385–1390CrossRefPubMedPubMedCentralGoogle Scholar
  10. Gibson GJ, Yang M (2017) What rheumatologists need to know about CRISPR/Cas9. Nat Rev Rheumatol 13:205–216CrossRefPubMedGoogle Scholar
  11. Hainzl S, Peking P, Kocher T, Murauer EM, Larcher F, Del Rio M, Duarte B, Steiner M, Klausegger A, Bauer JW, Reichelt J, Koller U (2017) COL7A1 editing via CRISPR/Cas9 in recessive dystrophic Epidermolysis bullosa. Mol Ther 25:2573–2584CrossRefPubMedGoogle Scholar
  12. Jing W, Zhang X, Sun W, Hou X, Yao Z, Zhu Y (2015) CRISPR/CAS9-mediated genome editing of miRNA-155 inhibits proinflammatory cytokine production by RAW264.7 cells. Biomed Res Int 2015:326042CrossRefPubMedPubMedCentralGoogle Scholar
  13. Lee PC, Truong B, Vega-Crespo A, Gilmore WB, Hermann K, Angarita SA, Tang JK, Chang KM, Wininger AE, Lam AK, Schoenberg BE, Cederbaum SD, Pyle AD, Byrne JA, Lipshutz GS (2016) Restoring ureagenesis in hepatocytes by CRISPR/Cas9-mediated genomic addition to arginase-deficient induced pluripotent stem cells. Mol Ther Nucl Acids 5:e394CrossRefGoogle Scholar
  14. Li HL, Fujimoto N, Sasakawa N, Shirai S, Ohkame T, Sakuma T, Tanaka M, Amano N, Watanabe A, Sakurai H, Yamamoto T (2015) Precise correction of the Dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Rep 4:143–154CrossRefGoogle Scholar
  15. Lin S, Staahl BT, Alla RK, Doudna JA (2014) Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. Elife 3:e04766PubMedPubMedCentralCrossRefGoogle Scholar
  16. Liu Yali, Yang Yi, Kang Xiangjin, Lin Bin, Qian Yu, Song Bing, Gao Ge, Chen Yaoyong, Sun Xiaofang, Li Xiaoping, Lei Bu, Fan Yong (2017) One-step biallelic and scarless correction of a β-thalassemia mutation in patient-specific iPSCs without drug selection. Mol Ther Nucl Acids 6:57–67CrossRefGoogle Scholar
  17. Ma H, Marti-Gutierrez N, Park SW, Wu J, Lee Y, Suzuki K, Koski A, Ji D, Hayama T, Ahmed R, Darby H, Van Dyken C, Li Y, Kang E, Park AR, Kim D, Kim ST, Gong J, Gu Y, Xu X, Battaglia D, Krieg SA, Lee DM, Wu DH, Wolf DP, Heitner SB, Belmonte JCI, Amato P, Kim JS, Kaul S, Mitalipov S (2017) Correction of a pathogenic gene mutation in human embryos. Nature 548:413–419CrossRefPubMedGoogle Scholar
  18. Maeder ML, Gersbach CA (2016) Genome-editing Technologies for gene and cell therapy. Mol Ther 24:430–446CrossRefPubMedPubMedCentralGoogle Scholar
  19. Monteys AM, Ebanks SA, Keiser MS, Davidson BL (2017) CRISPR/Cas9 editing of the mutant huntingtin allele in vitro and in vivo. Mol Ther 25:12–23CrossRefPubMedPubMedCentralGoogle Scholar
  20. Nygaard S, Barzel A, Haft A, Major A, Finegold M, Kay MA, Grompe M (2016) A universal system to select gene-modified hepatocytes in vivo. Sci Transl Med 8:342CrossRefGoogle Scholar
  21. Ohmori T, Nagao Y, Mizukami H, Sakata A, Muramatsu SI, Ozawa K, Tominaga SI, Hanazono Y, Nishimura S, Nureki O, Sakata Y (2017) CRISPR/Cas9-mediated genome editing via postnatal administration of AAV vector cures haemophilia B mice. Sci Rep 7:4159CrossRefPubMedPubMedCentralGoogle Scholar
  22. Ouellet DL, Cherif K, Rousseau J, Tremblay JP (2017) Deletion of the GAA repeats from the human frataxin gene using the CRISPR-Cas9 system in YG8R-derived cells and mouse models of Friedreich ataxia. Gene Ther 24:265–274CrossRefPubMedGoogle Scholar
  23. Pankowicz FP, Barzi M, Legras X, Hubert L, Mi T, Tomolonis JA, Ravishankar M, Sun Q, Yang D, Borowiak M, Sumazin P, Elsea S, Bissig-Choisat B, Bissig KD (2016) Reprogramming metabolic pathways in vivo with CRISPR/Cas9 genome editing to treat hereditary tyrosinaemia. Nat Commun 7:12642CrossRefPubMedPubMedCentralGoogle Scholar
  24. Park CY, Kim DH, Son JS, Sung JJ, Lee J, Bae S, Kim JH, Kim DW, Kim JS (2015) Functional correction of large factor VIII gene chromosomal inversions in hemophilia A patient-derived iPSCs using CRISPR-Cas9. Cell Stem Cell 17:213–220CrossRefPubMedGoogle Scholar
  25. Peddle CF, MacLaren RE (2017) The application of CRISPR/Cas9 for the treatment of retinal diseases. Yale J Biol Med 90:533–541PubMedPubMedCentralGoogle Scholar
  26. Reardon S (2016) First CRISPR clinical trial gets green light from US panel. Nat Methods 5:374–375Google Scholar
  27. Ren Jiangtao, Zhao Yangbing (2017) Advancing chimeric antigen receptor T cell therapy with CRISPR/Cas9. Protein Cell 8:634–643CrossRefPubMedPubMedCentralGoogle Scholar
  28. Shinkuma S, Guo Z, Christiano AM (2016) Site-specific genome editing for correction of induced pluripotent stem cells derived from dominant dystrophic epidermolysis bullosa. Proc Natl Acad Sci USA 113:5676–5681CrossRefPubMedPubMedCentralGoogle Scholar
  29. Smith C, Abalde-Atristain L, He C, Brodsky BR, Braunstein EM, Chaudhari P, Jang YY, Cheng L, Ye Z (2015) Efficient and allele-specific genome editing of disease loci in human iPSCs. Mol Ther 23:570–577CrossRefPubMedGoogle Scholar
  30. Soppe JA, Lebbink RJ (2017) Antiviral goes viral: harnessing CRISPR/Cas9 to combat viruses in humans. Trends Microbiol 25(10):833–850CrossRefPubMedGoogle Scholar
  31. Talan Jamie (2015) News from the Society for Neuroscience Annual Meeting: gene editing techniques show promise in silencing or inhibiting the mutant Huntington’s disease gene. Neurol Today 15:14–16Google Scholar
  32. Teimourian S, Abdollahzadeh R (2015) Technology developments in biological tools for targeted genome surgery. Biotechnol Lett 37:29–39CrossRefPubMedGoogle Scholar
  33. Turan S, Farruggio AP, Srifa W, Day JW, Calos MP (2016) Precise correction of disease mutations in induced pluripotent stem cells derived from patients with limb girdle muscular Dystrophy. Mol Ther 24:685–696CrossRefPubMedPubMedCentralGoogle Scholar
  34. van Agtmaal EL, Andre LM, Willemse M, Cumming SA, van Kessel IDG, Wjaa van den Broek G, Gourdon D, Furling V, Mouly DG, Monckton DG, Wansink DG (2017) CRISPR/Cas9-Induced (CTGCAG)n repeat instability in the myotonic Dystrophy type 1 locus: implications for therapeutic genome editing. Mol Ther 25:24–43CrossRefPubMedPubMedCentralGoogle Scholar
  35. Wang X, Raghavan A, Chen T, Qiao L, Zhang Y, Ding Q, Musunuru K (2016) CRISPR-Cas9 targeting of PCSK9 in human hepatocytes in vivo-brief report. Arterioscler Thromb Vasc Biol 36:783–786CrossRefPubMedPubMedCentralGoogle Scholar
  36. Wang L, Yi F, Lina F, Yang J, Wang S, Wang Z, Suzuki K, Sun L, Xiuling X, Yang Y, Qiao J, Belmonte JCI, Yang Z, Yuan Y, Jing Q, Liu GH (2017) CRISPR/Cas9-mediated targeted gene correction in amyotrophic lateral sclerosis patient iPSCs. Protein Cell 8:365–378CrossRefPubMedPubMedCentralGoogle Scholar
  37. Xie C, Zhang YP, Song L, Qi W, Jialu H, Danbo L, Yang Z, Zhang J, Xiao J, Zhou B, Du JL, Jing N, Liu Y, Wang Y, Li BL, Song BL, Yan Y (2016) Genome editing with CRISPR/Cas9 in postnatal mice corrects PRKAG2 cardiac syndrome. Cell Res 26:1099CrossRefPubMedPubMedCentralGoogle Scholar
  38. Yang Y, Wang L, Bell P, McMenamin D, He Z, White J, Yu H, Xu C, Morizono H, Musunuru K, Batshaw ML, Wilson JM (2016) A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat Biotechnol 34:334–338CrossRefPubMedPubMedCentralGoogle Scholar
  39. Yin H, Song CQ, Dorkin JR, Zhu LJ, Li Y, Wu Q, Park A, Yang J, Suresh S, Bizhanova A, Gupta A, Bolukbasi MF, Walsh S, Bogorad RL, Gao G, Weng Z, Dong Y, Koteliansky V, Wolfe SA, Langer R, Xue W, Anderson DG (2016) Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat Biotechnol 34:328–333CrossRefPubMedPubMedCentralGoogle Scholar
  40. Zhu P, Furen W, Mosenson J, Zhang H, He TC, Wen-Shu W (2017) CRISPR/Cas9-mediated genome editing corrects Dystrophin mutation in skeletal muscle stem cells in a mouse model of muscle dystrophy. Mol Ther Nucl Acids 7:31–41CrossRefGoogle Scholar
  41. Zych AO, Bajor M, Zagozdzon R (2018) Application of genome editing techniques in immunology. Arch Immunol Ther Exp (Warsz). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Medical GeneticsIran University of Medical Sciences (IUMS)TehranIran
  2. 2.Department of Infectious Diseases, School of Medicine, Pediatric Infectious Diseases Research CenterTehran University of Medical SciencesTehranIran

Personalised recommendations