Biotechnology Letters

, Volume 40, Issue 2, pp 335–341 | Cite as

Species of family Promicromonosporaceae and family Cellulomonadeceae that produce cellulosome-like multiprotein complexes

  • Wei Wang
  • Yang Yu
  • Tong-Yi DouEmail author
  • Jia-Yue Wang
  • Chenggong Sun
Original Research Paper



To screen the phylogenetically-nearest members of Cellulosimicrobium cellulans for the production of cellulosome-like multienzyme complexes and extracellular β-xylosidase activity against 7-xylosyltaxanes and to get corresponding molecular insights.


Cellulosimicrobium (family Promicromonosporaceae) and all genera of the family Cellulomonadeceaec produced both cellulosome-like multienzyme complexes and extracellular β-xylosidase activity, while the other genera of the family Promicromonosporaceae did not. Multiple sequence alignments further indicated that hypothetic protein M768_06655 might be a possible key subunit.


This is the first report that many actinobacteria species can produce cellulosome-like multienzyme complexes. The production of cellulosome-like complexes and the extracellular β-xylosidase activity against 7-xylosyltaxanes might be used to differentiate the genus Cellulosimicrobium from other genera of the family Promicromonosporaceae.


Cellulomonadeceae Cellulosome Multienzyme complexes Promicromonosporaceae β-Xylosidase 7-Xylosyltaxanes 



This work was supported by the National Natural Science Foundation of China (No. 31600641) and the Fundamental Research Funds for the Central Universities (No. DUT16RC(3)016).

Supporting Information

Supplementary Fig. 1—Multiple sequence alignment results (related to Table 2).

Supplementary material

10529_2017_2469_MOESM1_ESM.docx (23 kb)
Supplementary material 1 (DOCX 22 kb)


  1. Bayer EA, Lamed R, White BA, Flint HJ (2008) From cellulosomes to cellulosomics. Chem Rec 8:364–377CrossRefPubMedGoogle Scholar
  2. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL (2005) GenBank. Nucleic Acids Res 33:D34–D38CrossRefPubMedGoogle Scholar
  3. Boratyn GM, Camacho C, Cooper PS, Coulouris G, Fong A, Ma N, Madden TL, Matten WT, McGinnis SD, Merezhuk Y, Raytselis Y, Sayers EW, Tao T, Ye J, Zaretskaya I (2013) BLAST: a more efficient report with usability improvements. Nucleic Acids Res 41:W29–W33CrossRefPubMedPubMedCentralGoogle Scholar
  4. Doi RH, Kosugi A (2004) Cellulosomes: plant-cell-wall-degrading enzyme complexes. Nat Rev Microbiol 2:541–551CrossRefPubMedGoogle Scholar
  5. Dou TY, Luan HW, Liu XB, Li SY, Du XF, Yang L (2015a) Enzymatic hydrolysis of 7-xylosyltaxanes by an extracellular xylosidase from Cellulosimicrobium cellulans. Biotechnol Lett 37:1905–1910CrossRefPubMedGoogle Scholar
  6. Dou TY, Luan HW, Ge GB, Dong MM, Zou HF, He YQ, Cui P, Wang JY, Hao DC, Yang SL, Yang L (2015b) Functional and structural properties of a novel cellulosome-like multienzyme complex: efficient glycoside hydrolysis of water-insoluble 7-xylosyl-10-deacetylpaclitaxel. Sci Rep 5:13768CrossRefPubMedPubMedCentralGoogle Scholar
  7. Ferrer P (2006) Revisiting the Cellulosimicrobium cellulans yeast-lytic β-1,3-glucanases toolbox: a review. Microbial Cell Fact 5:10CrossRefGoogle Scholar
  8. Hao DC, Ge GB, Yang L (2008) Bacterial diversity of Taxus rhizosphere: culture-independent and culture-dependent approaches. FEMS Microbiol Lett 284:204–212CrossRefGoogle Scholar
  9. Jordan MA, Wilson L (2004) Microtubules as a target for anticancer drugs. Nat Rev Cancer 4:253–265CrossRefPubMedGoogle Scholar
  10. Kitamura K, Kaneko T, Yamamoto Y (1971) Lysis of viable yeast cells by enzymes of Arthrobacter luteus. Arch Biochem Biophys 145:402–404CrossRefPubMedGoogle Scholar
  11. Koeck DE, Pechtl A, Zverlov VV, Schwarz WH (2014) Genomics of cellulolytic bacteria. Curr Opin Biotechnol 29:171–183CrossRefPubMedGoogle Scholar
  12. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and clustal X version 2.0. Bioinformatics 23:2947–2948CrossRefPubMedGoogle Scholar
  13. McNeil MM, Brown JM, Carvalho ME, Hollis DG, Morey RE, Reller LB (2004) Molecular epidemiologic evaluation of endocarditis due to Oerskovia turbata and CDC group A-3 associated with contaminated homograft valves. J Clin Microbiol 42:2495–2500CrossRefPubMedPubMedCentralGoogle Scholar
  14. Metcalfe G, Brown ME (1957) Nitogen fixation by new species of Nocardia. J Gen Microbiol 17:567–572CrossRefPubMedGoogle Scholar
  15. Palumbo JD, Sullivan RF, Kobayashi DY (2003) Molecular characterization and expression in Escherichia coli of three beta-1,3-glucanase genes from Lysobacter enzymogenes strain N4-7. J Bacteriol 185:4362–4370CrossRefPubMedPubMedCentralGoogle Scholar
  16. Schumann P, Weiss N, Stackebrandt E (2001) Reclassification of Cellulomonas cellulans (Stackebrandt and Keddie 1986) as Cellulosimicrobium cellulans gen. nov., comb. nov. Int J Syst Evol Microbiol 51:1007–1010CrossRefPubMedGoogle Scholar
  17. Stackebrandt E, Prauser H (1991) Assignment of the genera Cellulomonas, Oerskovia, Promicromonospora and Jonesia to Cellulomonadaceae fam. nov. Syst Appl Microbiol 14:261–265CrossRefGoogle Scholar
  18. Whitman WB, Goodfellow M, Kampfer P, Busse HJ, Trujillo ME, Ludwig W, Suzuki K (2012) The Actinobacteria. Bergey’s Manual of Systematic Bacteriology. Springer, New York, p 5Google Scholar
  19. Zhao C, Chu Y, Li Y, Yang C, Chen Y, Wang X, Liu B (2017) High-throughput pyrosequencing used for the discovery of a novel cellulase from a thermophilic cellulose-degrading microbial consortium. Biotechnol Lett 39:123–131CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.The Second Affiliated Hospital of Dalian Medical UniversityDalianChina
  2. 2.School of Life Science and MedicineDalian University of TechnologyPanjinChina
  3. 3.Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina

Personalised recommendations