Advertisement

Biotechnology Letters

, Volume 39, Issue 4, pp 553–560 | Cite as

Identification and characterization of a novel carboxylesterase (FpbH) that hydrolyzes aryloxyphenoxypropionate herbicides

  • Chenghong Wang
  • Jiguo Qiu
  • Youjian Yang
  • Jinwei Zheng
  • Jian He
  • Shunpeng Li
Original Research Paper

Abstract

Objective

To identify and characterize a novel aryloxyphenoxypropionate (AOPP) herbicide-hydrolyzing carboxylesterase from Aquamicrobium sp. FPB-1.

Results

A carboxylesterase gene, fpbH, was cloned from Aquamicrobium sp. FPB-1. The gene is 798 bp long and encodes a protein of 265 amino acids. FpbH is smaller than previously reported AOPP herbicide-hydrolyzing carboxylesterases and shares only 21–35% sequence identity with them. FpbH was expressed in Escherichia coli BL21(DE3) and the product was purified by Ni–NTA affinity chromatography. The purified FpbH hydrolyzed a wide range of AOPP herbicides with catalytic efficiency in the order: haloxyfop-P-methyl > diclofop-methyl > fenoxaprop-P-ethyl > quizalofop-P-ethyl > fluazifop-P-butyl > cyhalofop-butyl. The optimal temperature and pH for FpbH activity were 37 °C and 7, respectively.

Conclusions

FpbH is a novel AOPP herbicide-hydrolyzing carboxylesterase; it is a good candidate for mechanistic study of AOPP herbicide-hydrolyzing carboxylesterases and for bioremediation of AOPP herbicide-contaminated environments.

Keywords

Aquamicrobium sp. FPB-1 Aryloxyphenoxypropionate herbicide Biodegradation Carboxylesterase FpbH 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31270157 and 31560033) and the Project of University-Industry Collaboration of Guangdong Province-Ministry (2013B090500017).

Supplementary information

Supplementary Fig. 1—Phylogenetic tree based on the 16S rRNA gene sequences of strain FPB-1 and related species.

Supplementary Fig. 2—SDS-PAGE of His-tagged FpbH.

Supplementary Fig. 3—HPLC and tandem mass spectrometry analysis of metabolite generated during fluazifop-P-butyl degradation by the purified FpbH.

Supplementary Fig. 4—Characterization of purified recombinant FpbH.

Supplementary material

10529_2016_2276_MOESM1_ESM.docx (452 kb)
Supplementary material 1 (DOCX 451 kb)

References

  1. Aksoy O, Dane F, Ekinci Sanal F, Aktac T (2007) The effects of fusilade (fluazifop-p-butyl) on germination, mitotic frequency and α-amylase activity of lentil (lens culinaris medik.) seeds. Acta Physiol Plant 29:115–120CrossRefGoogle Scholar
  2. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201CrossRefPubMedGoogle Scholar
  3. Bambauer A, Rainey FA, Stackebrandt E, Winter J (1998) Characterization of Aquamicrobium defluvii gen. nov. sp. nov., a thiophene-2-carboxylate-metabolizing bacterium from activated sludge. Arch Microbiol 169:293–302CrossRefPubMedGoogle Scholar
  4. Benkert P, Biasini M, Schwede T (2011) Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27:343–350CrossRefPubMedGoogle Scholar
  5. Bornscheuer UT (2002) Microbial carboxyl esterases: classification, properties and application in biocatalysis. FEMS Microbiol Rev 26:73–81CrossRefPubMedGoogle Scholar
  6. Chen Q, Chen K, Ni H, Zhuang W, Wang H, Zhu J, He Q, He J (2016) A novel amidohydrolase (DmhA) from Sphingomonas sp. that can hydrolyze the organophosphorus pesticide dimethoate to dimethoate carboxylic acid and methylamine. Biotechnol Lett 38:703–710CrossRefPubMedGoogle Scholar
  7. Dong W, Jiang S, Shi K, Wang F, Li S, Zhou J, Huang F, Wang Y, Zheng Y, Hou Y, Huang Y, Cui Z (2015) Biodegradation of fenoxaprop-P-ethyl (FE) by Acinetobacter sp. strain DL-2 and cloning of FE hydrolase gene afeH. Bioresour Technol 186:114–121CrossRefPubMedGoogle Scholar
  8. El-Metwally I, Shalby E (2007) Bio-remediation of fluazifop-p-butyl herbicide contaminated soil with special reference to efficacy of some weed control treatments in faba bean plants. Res J Agric Bio Sci 3:157–165Google Scholar
  9. Fritsche K, Auling G, Andreesen JR, Lechner U (1999) Defluvibacter lusatiae gen. nov., sp. nov., a new chlorophenol-degrading member of the α-2 subgroup of Proteobacteria. Syst Appl Microbiol 22:197–204CrossRefPubMedGoogle Scholar
  10. Glazyrina J, Materne EM, Dreher T, Storm D, Junne S, Adams T, Greller G, Neubauer P (2010) High cell density cultivation and recombinant protein production with Escherichia coli in a rocking-motion-type bioreactor. Microb Cell Fact. doi: 10.1186/1475-2859-9-42 PubMedPubMedCentralGoogle Scholar
  11. Hou Y, Tao J, Shen W, Liu J, Li J, Li Y, Cao H, Cui Z (2011) Isolation of the fenoxaprop-ethyl (FE)-degrading bacterium Rhodococcus sp. T1, and cloning of FE hydrolase gene feh. FEMS Microbiol Lett 323:196–203CrossRefPubMedGoogle Scholar
  12. Jin HM, Kim JM, Jeon CO (2013) Aquamicrobium aestuarii sp. nov., a marine bacterium isolated from a tidal flat. Int J Syst Evol Microbiol 63:4012–4017CrossRefPubMedGoogle Scholar
  13. Kämpfer P, Martin E, Lodders N, Jäckel U (2009) Transfer of Defluvibacter lusatiensis to the genus Aquamicrobium as Aquamicrobium lusatiense comb. nov. and description of Aquamicrobium aerolatum sp. nov. Int J Syst Evol Microbiol 59:2468–2470CrossRefPubMedGoogle Scholar
  14. Lipski A, Kämpfer P (2012) Aquamicrobium ahrensii sp. nov. and Aquamicrobium segne sp. nov., isolated from experimental biofilters. Int J Syst Evol Microbiol 62:2511–2516CrossRefPubMedGoogle Scholar
  15. Liu HM, Lou X, Ge ZJ, Yang F, Db Chen, Zhu JC, Xu JH, Li SP, Hong Q (2015) Isolation of an aryloxyphenoxy propanoate (AOPP) herbicide-degrading strain Rhodococcus ruber JPL-2 and the cloning of a novel carboxylesterase gene (feh) Braz. J Microbiol 46:425–432Google Scholar
  16. Marco B, Stefan B, Andrew W, Konstantin A, Gabriel S, Tobias S, Florian K, Tiziano GC, Martino B, Lorenza B, Torsten S (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acid Res. doi: 10.1093/nar/gku340 PubMedPubMedCentralGoogle Scholar
  17. Nie ZJ, Hang BJ, Cai S, Xie XT, He J, Li SP (2011) Degradation of cyhalofop-butyl (Cyb) by Pseudomonas azotoformans strain qdz-1 and cloning of a novel gene encoding cyb-hydrolyzing esterase. J Agric Food Chem 59:6040–6046CrossRefPubMedGoogle Scholar
  18. Trabelsi D, Cherni A, Barhoumi F, Mhamdi R (2015) Fluazifop-P-butyl (herbicide) affects richness and structure of soil bacterial communities. Soil Biol Biochem 81:89–97CrossRefGoogle Scholar
  19. Wang B, Guo P, Hang B, Li L, He J, Li S (2009) Cloning of a novel pyrethroid-hydrolyzing carboxylesterase gene from Sphingobium sp. strain JZ-1 and characterization of the gene product. Appl Environ Microbiol 75:5496–5500CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Chenghong Wang
    • 2
  • Jiguo Qiu
    • 1
  • Youjian Yang
    • 1
  • Jinwei Zheng
    • 3
  • Jian He
    • 1
  • Shunpeng Li
    • 1
  1. 1.Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life SciencesNanjing Agricultural UniversityNanjingChina
  2. 2.College of Basic Medical ScienceJiujiang UniversityJiujiangChina
  3. 3.College of Resources and Environmental SciencesNanjing Agricultural UniversityNanjingChina

Personalised recommendations