Biotechnology Letters

, Volume 39, Issue 3, pp 439–446 | Cite as

Generation of lycopene-overproducing strains of the fungus Mucor circinelloides reveals important aspects of lycopene formation and accumulation

  • Yingtong Zhang
  • Haiqin ChenEmail author
  • Eusebio Navarro
  • Sergio López-García
  • Yong Q. Chen
  • Hao Zhang
  • Wei Chen
  • Victoriano GarreEmail author
Original Research Paper



To generate lycopene-overproducing strains of the fungus Mucor circinelloides with interest for industrial production and to gain insight into the catalytic mechanism of lycopene cyclase and regulatory process during lycopene overaccumulation.


Three lycopene-overproducing mutants were generated by classic mutagenesis techniques from a β-carotene-overproducing strain. They carried distinct mutations in the carRP gene encoding lycopene cyclase that produced loss of enzymatic activity to different extents. In one mutant (MU616), the lycopene cyclase was completely destroyed, and a 43.8% (1.1 mg/g dry mass) increase in lycopene production was observed in comparison to that by the previously existing lycopene overproducer. In addition, feedback regulation of the end product was suggested in lycopene-overproducing strains.


A lycopene-overaccumulating strain of the fungus M. circinelloides was generated that could be an alternative for the industrial production of lycopene. Vital catalytic residues for lycopene cyclase activity and the potential mechanism of lycopene formation and accumulation were identified.


CarRP Feedback regulation Lycopene Lycopene cyclas Mucor circinelloides 



We thank J. A. Madrid for technical assistance. This work was funded by the Fundación Séneca (Comunidad Autónoma de la Región de Murcia, Spain), Project No. 08802/PI/08, The Program for New Century Excellent Talents (NCET-13-0831), The Program for Changjiang Scholars and Innovative Research Team in University (IRT1249). This study is supported by program of Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province.

Supporting information

Supplementary Table 1—Primer sequences.

Supplementary material

10529_2016_2265_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 12 kb)


  1. Bejarano ER, Parra F, Murillo FJ, Cerdá-Olmedo E (1988) End-product regulation of carotenogenesis in Phycomyces. Arch microbiol 150:209–214CrossRefGoogle Scholar
  2. Candau R, Bejarano ER, Cerda-Olmedo E (1991) In vivo channeling of substrates in an enzyme aggregate for beta-carotene biosynthesis. Proc Natl Acad Sci USA 88:4936–4940CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ciriminna R, Fidalgo A, Meneguzzo F, Ilharco LM, Pagliaro M (2016) Lycopene: emerging production methods and applications of a valued carotenoid. ACS Sustain Chem Eng 4:643–650CrossRefGoogle Scholar
  4. Corrochano LM et al (2016) Expansion of signal transduction pathways in fungi by extensive genome duplication. Curr Biol 26:1577–1584. doi: 10.1016/j.cub.2016.04.038 CrossRefPubMedGoogle Scholar
  5. Eslava AP, Alvarez MI, Burke PV, Delbrück M (1975) Genetic recombination in sexual crosses of Phycomyces. Genetics 80:445–462PubMedPubMedCentralGoogle Scholar
  6. Moise AR, Al-Babili S, Wurtzel ET (2013) Mechanistic aspects of carotenoid biosynthesis. Chem Rev 114:164–193CrossRefPubMedPubMedCentralGoogle Scholar
  7. Navarro E, Sandmann G, Torres-Martĺnez S (1995) Mutants of the carotenoid biosynthetic pathway of Mucor circinelloides. Exp Mycol 19:186–190CrossRefGoogle Scholar
  8. Navarro E, Lorca-Pascual JM, Quiles-Rosillo MD, Nicolas FE, Garre V, Torres-Martinez S, Ruiz-Vazquez RM (2001) A negative regulator of light-inducible carotenogenesis in Mucor circinelloides. Mol Genet Genom 266:463–470. doi: 10.1007/s004380100558 CrossRefGoogle Scholar
  9. Nicolas-Molina FE, Navarro E, Ruiz-Vazquez RM (2008) Lycopene over-accumulation by disruption of the negative regulator gene crgA in Mucor circinelloides. Appl Microbiol Biotechnol 78:131–137. doi: 10.1007/s00253-007-1281-5 CrossRefPubMedGoogle Scholar
  10. Roncero MIG (1984) Enrichment method for the isolation of auxotrophic mutants of Mucor using the polyene antibiotic N-glycosyl-polifungin. Carlsberg Res Commun 49:685–690CrossRefGoogle Scholar
  11. Ruiz-Perez VL, Murillo FJ, Torres-Martinez S (1995) PkpA, a novel Phycomyces blakesleeanus serine/threonine protein kinase. Curr Genet 28:309–316CrossRefPubMedGoogle Scholar
  12. Silva F, Torres-Martinez S, Garre V (2006) Distinct white collar-1 genes control specific light responses in Mucor circinelloides. Mol Microbiol 61:1023–1037. doi: 10.1111/j.1365-2958.2006.05291.x CrossRefPubMedGoogle Scholar
  13. Torres-Martinez S, Ruiz-Vazquez RM, Garre V, Lopez-Garcia S, Navarro E, Vila A (2012) Molecular tools for carotenogenesis analysis in the zygomycete Mucor circinelloides. Methods Mol Biol 898:85–107. doi: 10.1007/978-1-61779-918-1_5 CrossRefPubMedGoogle Scholar
  14. Velayos A, Lopez-Matas MA, Ruiz-Hidalgo MJ, Eslava AP (1997) Complementation analysis of carotenogenic mutants of Mucor circinelloides. Fungal Genet Biol 22:19–27. doi: 10.1006/fgbi.1997.0998 CrossRefPubMedGoogle Scholar
  15. Velayos A, Eslava AP, Iturriaga EA (2000) A bifunctional enzyme with lycopene cyclase and phytoene synthase activities is encoded by the carRP gene of Mucor circinelloides. Eur J Biochem 267:5509–5519CrossRefPubMedGoogle Scholar
  16. Xie W, Lv X, Ye L, Zhou P, Yu H (2015) Construction of lycopene-overproducing Saccharomyces cerevisiae by combining directed evolution and metabolic engineering. Metab Eng 30:69–78. doi: 10.1016/j.ymben.2015.04.009 CrossRefPubMedGoogle Scholar
  17. Zhang Y et al (2016) A new regulatory mechanism controlling carotenogenesis in the fungus Mucor circinelloides as a target to generate β-carotene over-producing strains by genetic engineering. Microb Cell Fact 15:1CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Yingtong Zhang
    • 1
  • Haiqin Chen
    • 1
    Email author
  • Eusebio Navarro
    • 2
  • Sergio López-García
    • 2
  • Yong Q. Chen
    • 1
  • Hao Zhang
    • 1
  • Wei Chen
    • 1
    • 3
  • Victoriano Garre
    • 2
    Email author
  1. 1.State Key Laboratory of Food Science and Technology, School of Food Science and TechnologyJiangnan UniversityWuxiPeople’s Republic of China
  2. 2.Departamento de Genética y Microbiología (Unidad Asociada al IQFR-CSIC), Facultad de BiologíaUniversidad de MurciaMurciaSpain
  3. 3.Beijing Innovation Centre of Food Nutrition and Human HealthBeijing Technology and Business University (BTBU)BeijingPeople’s Republic of China

Personalised recommendations