Advertisement

Biotechnology Letters

, Volume 39, Issue 1, pp 157–162 | Cite as

Highly efficient transglycosylation of sialo-complex-type oligosaccharide using Coprinopsis cinerea endoglycosidase and sugar oxazoline

  • Yujiro Higuchi
  • Yasunari Eshima
  • Yibo Huang
  • Takashi Kinoshita
  • Wataru Sumiyoshi
  • Shin-ichi Nakakita
  • Kaoru Takegawa
Original Research Paper

Abstract

Objectives

To establish an efficient method of chemoenzymatic modification for making N-linked oligosaccharide chains of glycoproteins structurally homogeneous, which crucially affects their bioactivities.

Results

Deglycosylated-RNase B (GlcNAc-RNase B; acceptor), sialylglyco (SG)-oxazoline (donor) and an N180H mutant of Coprinopsis cinerea endo-β-N-acetylglucosaminidase (Endo-CCN180H) were employed. pH 7.5 was ideal for both SG-oxazoline’s stability and Endo-CC’s transglycosylation reaction. The most efficient reaction conditions for producing glycosylated-RNase B, virtually modified completely with sialo-biantennary-type complex oligosaccharide, were: 80 μg GlcNAc-RNase B, 200 μg SG-oxazoline and 3 μg Endo-CCN180H in 20 μl 20 mM Tris/HCl pH 7.5 at 30 °C for 30–60 min.

Conclusions

This transglycosylation method using SG-oxazoline and Endo-CCN180H is beneficial for producing pharmaceutical glycoproteins modified with homogenous biantennary-complex-type oligosaccharides.

Keywords

Endo-β-N-Acetylglucosaminidase Complex-type oligosaccharide Coprinopsis N-Linked glycan Sialylglyco-oxazoline Sugar oxazoline Transglycosylation 

Notes

Acknowledgments

We would like to thank Dr. Jun Hirabayashi (AIST Japan) and Masahito Dozaki (Fushimi Pharm. Co. Ltd) for numerous discussions. This study was supported in part by JSPS KAKENHI Grant Number 26292054 and Mizutani Foundation for Glycoscience Grant Number 160190 (K.T.).

Supporting information

Supplementary Fig. 1—Transglycosylation of deglycosylated RNase B under several reaction conditions.Supplementary Fig. 2—Images of original SDS-PAGE gels used in this study to be used in conjunction with Figs. 2, 3 and 4 and also Supplementary Fig. 1.

Supplementary material

10529_2016_2230_MOESM1_ESM.docx (703 kb)
Supplementary material 1 (DOCX 702 kb)

References

  1. Eshima Y, Higuchi Y, Kinoshita T, Nakakita S, Takegawa K (2015) Transglycosylation activity of glycosynthase mutants of endo-β-N-acetylglucosaminidase from Coprinopsis cinerea. PLoS One 10:e0132859CrossRefPubMedPubMedCentralGoogle Scholar
  2. Fujita K, Kobayashi K, Iwamatsu A, Takeuchi M, Kumagai H, Yamamoto K (2004) Molecular cloning of Mucor hiemalis endo-conclusions β-N-acetylglucosaminidase and some properties of the recombinant enzyme. Arch Biochem Biophys 432:41–49CrossRefPubMedGoogle Scholar
  3. Huang W, Li C, Li B, Umekawa M, Yamamoto K, Zhang X, Wang LX (2009) Glycosynthases enable a highly efficient chemoenzymatic synthesis of N-glycoproteins carrying intact natural N-glycans. J Am Chem Soc 131:2214–2223CrossRefPubMedPubMedCentralGoogle Scholar
  4. Huang W, Yang Q, Umekawa M, Yamamoto K, Wang LX (2010) Arthrobacter endo-β-N-acetylglucosaminidase shows transglycosylation activity on complex-type N-glycan oxazolines: one-pot conversion of ribonuclease B to sialylated ribonuclease C. ChemBioChem 11:1350–1355CrossRefPubMedPubMedCentralGoogle Scholar
  5. Kadowaki S, Yamamoto K, Fujisaki M, Izumi K, Tochikura T, Yokoyama T (1990) Purification and characterization of a novel fungal endo-β-N-acetylglucosaminidase acting on complex oligosaccharides of glycoproteins. Agric Biol Chem 54:97–106PubMedGoogle Scholar
  6. Kadowaki S, Yamamoto K, Fujisaki M, Tochikura T (1991) Microbial endo-β-N-acetylglucosaminidases acting on complex-type sugar chains of glycoproteins. J Biochem 110:17–21PubMedGoogle Scholar
  7. Matsumiya S, Yamaguchi Y, Saito J, Nagano M, Sasakawa H, Otaki S, Satoh M, Shitara K, Kato K (2007) Structural comparison of fucosylated and nonfucosylated Fc fragments of human immunoglobulin G1. J Mol Biol 368:767–779CrossRefPubMedGoogle Scholar
  8. Noguchi M, Fujieda T, Huang WC, Ishihara M, Kobayashi A, Shoda SI (2012) A practical one-step synthesis of 1,2-oxazoline derivatives from unprotected sugars and its application to chemoenzymatic β-N-acetylglucosaminidation of disialo-oligosaccharide. Helv Chim Acta 95:1928–1936CrossRefGoogle Scholar
  9. Takegawa K, Inami M, Yamamoto K, Kumagai H, Tochikura T, Mikami B, Morita Y (1988a) Elucidation of the role of sugar chains in glucoamylase using endo-β-N-acetylglucosaminidase from Flavobacterium sp. Biochim Biophys Acta 955:187–193CrossRefGoogle Scholar
  10. Takegawa K, Inami M, Yamamoto K, Kumagai H, Tochikura T, Mikami B, Morita Y (1988b) Deglycosylated glucoamylase from Rhizopus niveus is precipitated by Flavobacterium sp. endo-β-N-acetylglucosaminidase. Agric Biol Chem 52:2941–2942Google Scholar
  11. Takegawa K, Nakoshi M, Iwahara S, Yamamoto K, Tochikura T (1989) Induction and purification of endo-β-N-acetylglucosaminidase from Arthrobacter protophormiae grown in ovalbumin. Appl Environ Microbiol 55:3107–3112PubMedPubMedCentralGoogle Scholar
  12. Takegawa K, Tabuchi M, Yamaguchi S, Kondo A, Kato I, Iwahara S (1995) Synthesis of neoglycoproteins using oligosaccharide-transfer activity with endo-β-N-acetylglucosaminidase. J Biol Chem 270:3094–3099CrossRefPubMedGoogle Scholar
  13. Takegawa K, Yamabe K, Fujita K, Tabuchi M, Mita M, Izu H, Watanabe A, Asada Y, Sano M, Kondo A, Kato I, Iwahara S (1997) Cloning, sequencing, and expression of Arthrobacter protophormiae endo-β-N-acetylglucosaminidase in Escherichia coli. Arch Biochem Biophys 338:22–28CrossRefPubMedGoogle Scholar
  14. Umekawa M, Huang W, Li B, Fujita K, Ashida H, Wang LX, Yamamoto K (2008) Mutants of Mucor hiemalis endo-β-N-acetylglucosaminidase show enhanced transglycosylation and glycosynthase-like activities. J Biol Chem 283:4469–4479CrossRefPubMedGoogle Scholar
  15. Umekawa M, Higashiyama T, Koga Y, Tanaka T, Noguchi M, Kobayashi A, Shoda S, Huang W, Wang LX, Ashida H, Yamamoto K (2010a) Efficient transfer of sialo-oligosaccharide onto proteins by combined use of a glycosynthase-like mutant of Mucor hiemalis endoglycosidase and synthetic sialo-complex-type sugar oxazoline. Biochim Biophys Acta 1800:1203–1209CrossRefPubMedGoogle Scholar
  16. Umekawa M, Li C, Higashiyama T, Huang W, Ashida H, Yamamoto K, Wang LX (2010b) Efficient glycosynthase mutant derived from Mucor hiemalis endo-β-N-acetylglucosaminidase capable of transferring oligosaccharide from both sugar oxazoline and natural N-glycan. J Biol Chem 285:511–521CrossRefPubMedGoogle Scholar
  17. Wang LX (2008) Chemoenzymatic synthesis of glycopeptides and glycoproteins through endoglycosidase-catalyzed transglycosylation. Carbohydr Res 343:1509–1522CrossRefPubMedPubMedCentralGoogle Scholar
  18. Wang LX (2011) The amazing transglycosylation activity of endo-β-N-acetylglucosaminidases. Trends Glycosci Glycotechnol 23:33–52CrossRefPubMedPubMedCentralGoogle Scholar
  19. Wang LX, Amin MN (2014) Chemical and chemoenzymatic synthesis of glycoproteins for deciphering functions. Chem Biol 21:51–66CrossRefPubMedPubMedCentralGoogle Scholar
  20. Wang LX, Lomino JV (2012) Emerging technologies for making glycan-defined glycoproteins. ACS Chem Biol 7:110–122CrossRefPubMedGoogle Scholar
  21. Yamaguchi Y, Nishimura M, Nagano M, Yagi H, Sasakawa H, Uchida K, Shitara K, Kato K (2006) Glycoform-dependent conformational alteration of the Fc region of human immunoglobulin G1 as revealed by NMR spectroscopy. Biochim Biophys Acta 1760:693–700CrossRefPubMedGoogle Scholar
  22. Yamamoto K, Kadowaki S, Fujisaki M, Kumagai H, Tochikura T (1994) Novel specificities of Mucor hiemalis endo-β-N-acetylglucosaminidase acting complex asparagine-linked oligosaccharides. Biosci Biotechnol Biochem 58:72–77CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Yujiro Higuchi
    • 1
  • Yasunari Eshima
    • 1
  • Yibo Huang
    • 1
  • Takashi Kinoshita
    • 2
  • Wataru Sumiyoshi
    • 2
  • Shin-ichi Nakakita
    • 3
  • Kaoru Takegawa
    • 1
  1. 1.Department of Bioscience and Biotechnology, Faculty of AgricultureKyushu UniversityFukuokaJapan
  2. 2.Fushimi Pharmaceutical Co. Ltd.MarugameJapan
  3. 3.Department of Functional Glycomics, Life Science Research CenterKagawa UniversityMiki-ChoJapan

Personalised recommendations