Biotechnology Letters

, Volume 38, Issue 9, pp 1603–1610 | Cite as

Establishing an efficient gene-targeting system in an itaconic-acid producing Aspergillus terreus strain

Original Research Paper

Abstract

Objectives

To develop an efficient gene-targeting platform in an excellent itaconic acid producing strain Aspergillus terreus CICC40205.

Results

The frequency of homologous recombination was improved by deleting the ku80 gene. A nutritional transformation system based on the bidirectionally selectable marker, pyrGAn, was established in the ku80-/pyrG-double mutant which is convenient for following marker rescue. The modified Cre/loxP recombination system was applied for the excision of the pyrGAn marker by directly introducing Cre recombinase into the protoplasts.

Conclusions

This gene-targeting system is an efficient platform for sequential and multiple genetic modifications in A. terreus and is conducive to study biosynthesis mechanisms and to improve the production ability of itaconic acid and other products.

Keywords

Aspergillus terreus Cre/loxP system Gene-targeting Itaconic acid Non-homologous end joining pyrG 

Notes

Acknowledgments

Thanks to Dr. Xiaoming Tan for valuable discussions. This work was supported by National Natural Sciences Foundation of China (Nos. 31400080 and 31500042), National High Technology Research and Development Program of China (Nos. 2015AA021003), the Key Research Program of the Chinese Academy of Sciences (No. KSZD-EW-Z-016).

Authors contributions

XL, XH and JL designed the experiments. XH, MC performed the experiments. XH, XL, JL and MC drafted the manuscript.

Supporting information

Supplementary Table 1—Primers used.

Supplementary Fig. 1—Construction of the plasmid pXH106

Supplementary Fig. 2—Characterization of the genotypes of At-∆ku80 mutant strain.

Supplementary Fig. 3—Genomic PCR analysis of the At-∆pyrG mutant strain.

Supplementary Fig. 4—Genomic PCR analysis of the At-loxP-pyrGAn mutants obtained in the complementation test of At-∆pyrG.

Supplementary Fig. 5—The DNA sequencing result of the PCR-amplified fragments from the pyrGAn marker region of At-loxP-∆pyrGAn mutant.

Compliance with ethical standards

Conflict of interests

The authors declare that they have no competing interests.

Supplementary material

10529_2016_2143_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1 (DOCX 1492 kb)

References

  1. Aragona M, Valente MT (2015) Genetic transformation of the tomato pathogen Pyrenochaeta lycopersici allowed gene knockout using a split-marker approach. Curr Genet 61:211–220CrossRefPubMedGoogle Scholar
  2. Barrios-Gonzalez J, Miranda RU (2010) Biotechnological production and applications of statins. Appl Microbiol Biotechnol 85:869–883CrossRefPubMedGoogle Scholar
  3. Blumhoff M, Steiger MG, Marx H, Mattanovich D, Sauer M (2013) Six novel constitutive promoters for metabolic engineering of Aspergillus niger. Appl Microbiol Biotechnol 97:259–267CrossRefPubMedGoogle Scholar
  4. Florea S, Andreeva K, Machado C, Mirabito PM, Schardl CL (2009) Elimination of marker genes from transformed filamentous fungi by unselected transient transfection with a Cre-expressing plasmid. Fungal Genet Biol 46:721–730CrossRefPubMedGoogle Scholar
  5. Forment JV, Ramon D, MacCabe AP (2006) Consecutive gene deletions in Aspergillus nidulans: application of the Cre/loxP system. Curr Genet 50:217–224CrossRefPubMedGoogle Scholar
  6. Fu J, Hettler E, Wickes BL (2006) Split marker transformation increases homologous integration frequency in Cryptococcus neoformans. Fungal Genet Biol 43:200–212CrossRefPubMedGoogle Scholar
  7. Gressler M, Zaehle C, Scherlach K, Hertweck C, Brock M (2011) Multifactorial induction of an orphan PKS-NRPS gene cluster in Aspergillus terreus. Chem Biol 18:198–209CrossRefPubMedGoogle Scholar
  8. Guo CJ, Knox BP, Sanchez JF, Chiang YM, Bruno KS, Wang CCC (2013) Application of an efficient gene targeting system linking secondary metabolites to their biosynthetic genes in Aspergillus terreus. Org Lett 15:3562–3565CrossRefPubMedGoogle Scholar
  9. Honda Y, Kobayashi K, Kirimura K (2011) Increases in gene-targeting frequencies due to disruption of kuea as a ku80 homolog in citric acid-producing Aspergillus niger. Biosci Biotechnol Biochem 75:1594–1596CrossRefPubMedGoogle Scholar
  10. Huang X, Chen M, Lu X, Li Y, Li X, Li JJ (2014a) Direct production of itaconic acid from liquefied corn starch by genetically engineered Aspergillus terreus. Microb Cell Fact 13:108CrossRefPubMedPubMedCentralGoogle Scholar
  11. Huang X, Lu X, Li Y, Li X, Li JJ (2014b) Improving itaconic acid production through genetic engineering of an industrial Aspergillus terreus strain. Microb Cell Fact 13:119CrossRefPubMedPubMedCentralGoogle Scholar
  12. Huang X, Lu X, Li JJ (2014c) Cloning, characterization and application of a glyceraldehyde-3-phosphate dehydrogenase promoter from Aspergillus terreus. J Ind Microbiol Biotechnol 41:585–592CrossRefPubMedGoogle Scholar
  13. Ishibashi K, Suzuki K, Ando Y, Takakura C, Inoue H (2006) Nonhomologous chromosomal integration of foreign DNA is completely dependent on MUS-53 (human Lig4 homolog) in Neurospora. Proc Natl Acad Sci USA 103:14871–14876CrossRefPubMedPubMedCentralGoogle Scholar
  14. Kanamasa S, Yamaoka K, Kawaguchi T, Sumitani J, Arai M (2003) Transformation of Aspergillus aculeatus using the drug resistance gene of Aspergillus oryzae and the pyrG gene of Aspergillus nidulans. Biosci Biotechnol Biochem 67:2661–2663CrossRefPubMedGoogle Scholar
  15. Klement T, Buchs J (2013) Itaconic acid–a biotechnological process in change. Bioresour Technol 135:422–431CrossRefPubMedGoogle Scholar
  16. Kopke K, Hoff B, Kuck U (2010) Application of the Saccharomyces cerevisiae FLP/FRT recombination system in filamentous fungi for marker recycling and construction of knockout strains devoid of heterologous genes. Appl Environ Microbiol 76:4664–4674CrossRefPubMedPubMedCentralGoogle Scholar
  17. Krappmann S, Bayram O, Braus GH (2005) Deletion and allelic exchange of the Aspergillus fumigatus veA locus via a novel recyclable marker module. Eukaryot Cell 4:1298–1307CrossRefPubMedPubMedCentralGoogle Scholar
  18. Krappmann S, Sasse C, Braus GH (2006) Gene targeting in Aspergillus fumigatus by homologous recombination is facilitated in a nonhomologous end- joining-deficient genetic background. Eukaryot Cell 5:212–215CrossRefPubMedPubMedCentralGoogle Scholar
  19. Lin YH, Li YF, Huang MC, Tsai YC (2004) Intracellular expression of Vitreoscilla hemoglobin in Aspergillus terreus to alleviate the effect of a short break in aeration during culture. Biotechnol Lett 26:1067–1072CrossRefPubMedGoogle Scholar
  20. Maruyama J, Kitamoto K (2008) Multiple gene disruptions by marker recycling with highly efficient gene-targeting background (∆ligD) in Aspergillus oryzae. Biotechnol Lett 30:1811–1817CrossRefPubMedGoogle Scholar
  21. Mattern IE, Unkles S, Kinghorn JR, Pouwels PH, van den Hondel CA (1987) Transformation of Aspergillus oryzae using the A. niger pyrG gene. Mol Gen Genet 210:460–461CrossRefPubMedGoogle Scholar
  22. Mizutani O, Kudo Y, Saito A, Matsuura T, Inoue H, Abe K, Gomi K (2008) A defect of LigD (human Lig4 homolog) for nonhomologous end joining significantly improves efficiency of gene-targeting in Aspergillus oryzae. Fungal Genet Biol 45:878–889CrossRefPubMedGoogle Scholar
  23. Mizutani O, Masaki K, Gomi K, Iefuji H (2012) Modified Cre-loxP recombination in Aspergillus oryzae by direct introduction of Cre recombinase for marker gene rescue. Appl Environ Microbiol 78:4126–4133CrossRefPubMedPubMedCentralGoogle Scholar
  24. Slesiona S, Ibrahim-Granet O, Olias P, Brock M, Jacobsen ID (2012) Murine infection models for Aspergillus terreus pulmonary aspergillosis reveal long-term persistence of conidia and liver degeneration. J Infect Dis 205:1268–1277CrossRefPubMedGoogle Scholar
  25. Tani S, Tsuji A, Kunitake E, Sumitani J, Kawaguchi T (2013) Reversible impairment of the ku80 gene by a recyclable marker in Aspergillus aculeatus. AMB Express 3:4CrossRefPubMedPubMedCentralGoogle Scholar
  26. Tevz G, Bencina M, Legisa M (2010) Enhancing itaconic acid production by Aspergillus terreus. Appl Microbiol Biotechnol 87:1657–1664CrossRefPubMedGoogle Scholar
  27. Wang BH, Xu Y, Li YP (2010) Use of the pyrG gene as a food-grade selection marker in Monascus. Biotechnol Lett 32:1631–1635CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Xuenian Huang
    • 1
    • 2
  • Mei Chen
    • 1
  • Jianjun Li
    • 1
    • 3
  • Xuefeng Lu
    • 1
  1. 1.Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.National Key Laboratory of Biochemical Engineering, Institute of Process EngineeringChinese Academy of SciencesBeijingChina

Personalised recommendations