Advertisement

Biotechnology Letters

, Volume 38, Issue 8, pp 1359–1365 | Cite as

An engineered non-oxidative glycolysis pathway for acetone production in Escherichia coli

  • Xiaoyan Yang
  • Qianqian Yuan
  • Yangyang Zheng
  • Hongwu Ma
  • Tao Chen
  • Xueming Zhao
Original Research Paper

Abstract

Objectives

To find new metabolic engineering strategies to improve the yield of acetone in Escherichia coli.

Results

Results of flux balance analysis from a modified Escherichia coli genome-scale metabolic network suggested that the introduction of a non-oxidative glycolysis (NOG) pathway would improve the theoretical acetone yield from 1 to 1.5 mol acetone/mol glucose. By inserting the fxpk gene encoding phosphoketolase from Bifidobacterium adolescentis into the genome, we constructed a NOG pathway in E.coli. The resulting strain produced 47 mM acetone from glucose under aerobic conditions in shake-flasks. The yield of acetone was improved from 0.38 to 0.47 mol acetone/mol glucose which is a significant over the parent strain.

Conclusions

Guided by computational analysis of metabolic networks, we introduced a NOG pathway into E. coli and increased the yield of acetone, which demonstrates the importance of modeling analysis for the novel metabolic engineering strategies.

Keywords

Acetone Escherichia coli Non-oxidative glycolysis Phosphoketolase 

Notes

Acknowledgments

This work was supported by the National Key Basic Research Program of China (973 Program) (Nos. 2012CB725203, 2015CB755704) and the Key Project in the Tianjin Science & Technology Pillar Program (No. 14ZCZDSY00060).

Supporting Information

Supplementary Table 1—Strains and plasmids used in this study.

Supplementary Table 2—Primer sequence used in this study.

Supplementary material

10529_2016_2115_MOESM1_ESM.doc (61 kb)
Supplementary material 1 (DOC 61 kb)

References

  1. Bermejo LL, Welker NE, Papoutsakis ET (1998) Expression of Clostridium acetobutylicum ATCC 824 genes in Escherichia coli for acetone production and acetate detoxification. Appl Environ Microbiol 64:1079–1085PubMedPubMedCentralGoogle Scholar
  2. Bogorad IW, Lin TS, Liao JC (2013) Synthetic non-oxidative glycolysis enables complete carbon conservation. Nature 502:693–698CrossRefPubMedGoogle Scholar
  3. Boynton ZL, Bennett GN, Rudolth FB (1994) Intracellular concentrations of coenzyme A and its derivatives from Clostridium acetobutylicum ATCC 824 and their roles in enzyme regulation. Appl Environ Microbiol 60:39–44PubMedPubMedCentralGoogle Scholar
  4. Castaño-Cerezo S, Bernal V et al (2014) Regulation of acetate metabolism in Escherichia coli BL21 by protein Nε-lysine acetylation. Appl Microbiol Biotechnol 99:3533–3545CrossRefPubMedGoogle Scholar
  5. Chohnan S, Takamura Y (1991) A simple micromethod for measurement of CoASH and its use in measuring intracellular levels of CoASH and short chain Acyl-CoAs in Escherichia coli K12 cells. Agric Biol Chem 55:87–94Google Scholar
  6. Hanai T, Atsumi S, Liao JC (2007) Engineered synthetic pathway for isopropanol production in Escherichia coli. Appl Environ Microbiol 73:7814–7818CrossRefPubMedPubMedCentralGoogle Scholar
  7. Jones DT, Woods DR (1986) Acetone-butanol fermentation revisited. Microbiol Rev 40:484–524Google Scholar
  8. Lin ZQ, Xu ZB, Li YF et al (2014) Metabolic engineering of Escherichia coli for the production of riboflavin. Microb Cell Fact 13:1–12CrossRefGoogle Scholar
  9. May A, Fischer RJ, Thum SM et al (2012) A modified pathway for the production of acetone in Escherichia coli. Metab Eng 15:218–225CrossRefPubMedGoogle Scholar
  10. McCleary WR, Stock JB, Ninfa AJ (1993) Is acetyl phosphate a global signal in Escherichia coli. J Bacteriol 175:2793–2798PubMedPubMedCentralGoogle Scholar
  11. Noguch S, Putri SP, Lan EI et al (2016) Quantitative target analysis and kinetic profiling of acyl-CoAs reveal the rate-limiting step in cyanobacterial 1-butanol production. Metabolomics 12:1–10CrossRefGoogle Scholar
  12. Orth JD, Conrad TM, Na J et al (2011) A comprehensive genome-scale reconstruction of Escherichia coli metabolism. Mol Syst Biol 7:1–9Google Scholar
  13. Schellenberger J, Que R, Fleming RM et al (2011) Quantitative prediction of cellular metabolism with constraint based models: the COBRA Toolbox v2.0. Nat Protoc 6:1290–1307CrossRefPubMedPubMedCentralGoogle Scholar
  14. Shi AQ, Zhu XN, Lu J, Zhang XL et al (2012) Activating transhydrogenase and NAD kinase in combination for improving isobutanol production. Metab Eng 16:1–10CrossRefPubMedGoogle Scholar
  15. Soma Y, Inokuma K, Tanaka T et al (2012) Direct isopropanol production from cellobiose by engineered Escherichia coli using a synthetic pathway and a cell surface display system. J Biosci Bioeng 114:80–85CrossRefPubMedGoogle Scholar
  16. Vadali RV, Bennett GN, San KY (2004) Cofactor engineering of intracellular CoA/acetyl-CoA and its effect on metabolic flux redistribution in Escherichia coli. Metab Eng 6:133–139CrossRefPubMedGoogle Scholar
  17. Wendisch VF, Spies M, Reinscheid DJ et al (1997) Regulation of acetate metabolism in Corynebacterium glutamicum: transcriptional control of the isocitrate lyase and malate synthase genes. Arch Microbiol 168:262–269CrossRefPubMedGoogle Scholar
  18. Zhu NQ, Xia HH, Wang ZW et al (2013) Engineering of acetate recycling and citrate synthase to improve aerobic succinate production in Corynebacterium glutamicum. PLoS ONE 8:1–8Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Xiaoyan Yang
    • 1
    • 2
  • Qianqian Yuan
    • 1
    • 2
  • Yangyang Zheng
    • 2
  • Hongwu Ma
    • 2
  • Tao Chen
    • 1
  • Xueming Zhao
    • 1
  1. 1.School of Chemical Engineering and TechnologyTianjin UniversityTianjinPeople’s Republic of China
  2. 2.Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjinPeople’s Republic of China

Personalised recommendations