Advertisement

Biotechnology Letters

, Volume 38, Issue 3, pp 417–423 | Cite as

Two acetyl-CoA synthetase isoenzymes are encoded by distinct genes in marine yeast Rhodosporidium diobovatum

  • Yuxuan Liu
  • Meiru Zhang
  • Tianshi Wang
  • Xunxun Shi
  • Jie Li
  • Lu Jia
  • Hui Tang
  • Liping Zhang
Original Research Paper

Abstract

Objectives

Two genes encoding two acetyl-CoA synthetase (ACS) isoenzymes have been identified in the marine yeast Rhodosporidium diobovatum MCCC 2A00023.

Results

ACS1 encoded a polypeptide with a sequence of 578 amino acid residues, a predicted molecular weight of 63.73 kDa, and pI of 8.14, while the ACS2 encoded a polypeptide containing 676 amino acid residues with a deduced molecular mass of 75.61 kDa and a pI of 5.95. Biological activity of Acs1p and Acs2p was confirmed by heterologous expression in Escherichia coli. A 1.5-kb DNA fragment of the ACS1 gene and a 2.7-kb DNA fragment of the ACS2 gene were deleted using the RNA guide CRISPR-Cas9 system. The strain lacking ACS1 was unable to grow on acetate and ethanol media, while the ACS2 deletant was unable to grow on glucose medium. ACS1-ACS2 double mutants of R. diobovatum were non-viable.

Conclusions

ACS isoenzymes are essential to the yeast metabolism, and other sources of ACSs cannot compensate for the lack of ACSs encoded by the two genes.

Keywords

Acetyl-CoA synthetase CRISPR-Cas9 Isoenzymes Rhodosporidium diobovatum 

Notes

Acknowledgments

This work was supported by the Science Research Plan of Hebei Higher Schools (No. Z2010225) and open fund of Key laboratory (No. 3333112).

Supporting information

Supplementary Table 1—Primer sequences used in this study.

Supplementary Fig. 1—(a) Comparison of the nucleotide sequences of R. diobovatum MCCC 2A00023 ACS1 genomic DNA and cDNA. (b) Comparison of the nucleotide sequences of R. diobovatum MCCC 2A00023 ACS2 genomic DNA and cDNA.

Supplementary material

10529_2015_2006_MOESM1_ESM.doc (42 kb)
Supplementary material 1 (DOC 42 kb)
10529_2015_2006_MOESM2_ESM.tif (301 kb)
Supplementary material 2 (TIFF 300 kb)
10529_2015_2006_MOESM3_ESM.tif (321 kb)
Supplementary material 3 (TIFF 321 kb)

References

  1. Bao Z, Xiao H, Liang J, Zhang L, Xiong X, Sun N, Si T, Zhao H (2015) Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae. ACS Synth Biol 4:585–954CrossRefPubMedGoogle Scholar
  2. Brizzio S, Turchetti B, de García V, Libkind D, Buzzini P, van Broock M (2007) Extracellular enzymatic activities of basidiomycetous yeasts isolated from glacial and subglacial waters of northwest Patagonia (Argentina). Can J Microbiol 53:519–525CrossRefPubMedGoogle Scholar
  3. Chen Y, Siewers V, Nielsen J (2012) Profiling of cytosolic and peroxisomal acetyl-CoA metabolism in Saccharomyces cerevisiae. PLoS ONE 7:e42475PubMedCentralCrossRefPubMedGoogle Scholar
  4. De Jong-Gubbels P, Van den Berg MA, Steensma HY, van Dijken JP, Pronk JT (1997) The Saccharomyces cerevisiae acetyl-coenzyme A synthetase encoded by the ACS1 gene, but not the ACS2-encoded enzyme, is subject to glucose catabolite inactivation. FEMS Microbiol Lett 153:75–81CrossRefPubMedGoogle Scholar
  5. Hiltunen JK, Mursula AM, Rottensteiner H, Wierenga RK, Kastaniotis AJ, Gurvitz A (2003) The biochemistry of peroxisomal beta-oxidation in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 27:35–64CrossRefPubMedGoogle Scholar
  6. Krivoruchko A, Serrano-Amatriain C, Chen Y, Siewers V, Nielsen J (2013) Improving biobutanol production in engineered Saccharomyces cerevisiae by manipulation of acetyl-CoA metabolism. J Ind Microbiol Biotechnol 40:1051–1056CrossRefPubMedGoogle Scholar
  7. Lian J, Si T, Nair NU, Zhao H (2014) Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains. Metab Eng 24:139–149CrossRefPubMedGoogle Scholar
  8. Margesin R, Miteva V (2011) Diversity and ecology of psychrophilic microorganisms. Res Microbiol 162:346–361CrossRefPubMedGoogle Scholar
  9. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308PubMedCentralCrossRefPubMedGoogle Scholar
  10. Starai VJ, Escalante-Semerena JC (2004) Acetyl-coenzyme A synthetase (AMP forming). Cell Mol Life Sci 61:2020–2030CrossRefPubMedGoogle Scholar
  11. Strijbis K, Distel B (2010) Intracellular acetyl unit transport in fungal carbon metabolism. Eukaryot Cell 9:1809–1815PubMedCentralCrossRefPubMedGoogle Scholar
  12. van den Berg MA, de Jong-Gubbels P, Kortland CJ, van Dijken JP, Pronk JT, Steensma HY (1996) The two acetyl-coenzyme A synthetases of Saccharomyces cerevisiae differ with respect to kinetic properties and transcriptional regulation. J Biol Chem 271:28953–28959CrossRefPubMedGoogle Scholar
  13. Wolfe AJ (2005) The acetate switch. Microbiol Mol Biol Rev 69:12–50PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Yuxuan Liu
    • 1
  • Meiru Zhang
    • 1
  • Tianshi Wang
    • 1
  • Xunxun Shi
    • 1
  • Jie Li
    • 1
  • Lu Jia
    • 1
  • Hui Tang
    • 1
  • Liping Zhang
    • 1
  1. 1.Key Laboratory of Microbial Diversity Research and Application of Hebei Province, College of Life SciencesHebei UniversityBaodingChina

Personalised recommendations