Advertisement

Biotechnology Letters

, Volume 38, Issue 3, pp 385–394 | Cite as

Approaches for recombinant human factor IX production in serum-free suspension cultures

  • Robson Luis Ferraz do Amaral
  • Aline de Sousa Bomfim
  • Mário Soares de Abreu-Neto
  • Virgínia Picanço-Castro
  • Elisa Maria de Sousa Russo
  • Dimas Tadeu Covas
  • Kamilla SwiechEmail author
Original Research Paper

Abstract

Objective

To establish a serum-free suspension process for production of recombinant human factor IX (rhFIX) based on the human cell line HEK 293T by evaluating two approaches: (1) serum-free suspension adaptation of previously genetic modified cells (293T-FIX); and (2) genetic modification of cells already adapted to such conditions (293T/SF-FIX).

Results

After 10 months, 293T-FIX cells had become adapted to FreeStyle 293 serum-free medium (SFM) in Erlenmeyer flasks. After 48 and 72 h of culture, 2.1 µg rhFIX/ml and 3.3 µg rhFIX/ml were produced, respectively. However, no biological activity was detected. In the second approach, wild-type 293T cells were adapted to the same SFM (adaptation process took only 2 months) and then genetically modified for rhFIX production. After 48 h of culture, rhFIX reached 1.5 µg/ml with a biological activity of 0.2 IU/ml, while after 72 h, the production was 2.4 µg/ml with a biological activity of 0.3 IU/ml.

Conclusion

The findings demonstrate that the best approach to establish an rhFIX production process in suspension SFM involves the genetic modification of cells already adapted to the final conditions. This approach is time saving and may better ensure the quality of the produced protein.

Keywords

Adaptation HEK293 Clotting factor Human cells Recombinant factor IX Serum-free suspension cultures 

Notes

Acknowledgments

The authors acknowledge financial support from Sao Paulo Research Foundation (FAPESP). Process numbers 2012/04629-8 and 2011/10778-3.

References

  1. Altamiro C, Berrios J, Vergara M, Becerra S (2013) Advances in improving mammalian cells metabolism for recombinant protein production. Eur J Biotechnol 16:1–14Google Scholar
  2. Blostein M, Cuerquis J, Landry S, Galipeau J (2008) The carboxylation efficiency of the vitamin K-dependent clotting factors studies with factor IX. Haemophilia 14:1063–1068CrossRefPubMedGoogle Scholar
  3. Bomfim A (2013) Cloning and expression of recombinant factor IX in 293T and SK-Hep-1 cells and characterization of producing cells. Master Dissertation, School of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo, Brazil). http://www.teses.usp.br/teses/disponiveis/60/60135/tde-13122013-111826/en.php
  4. Brunner D, Frank J, Appl H, Schöffl H, Pfaller W, Gstraunthaler G (2010) Serum-free cell culture the serum-free media interative online database. ALTEX 27:53–62PubMedGoogle Scholar
  5. Cervera L, Gutierrez-Granados S, Martinez M, Blanco J, Godia F, Segura M (2013) Generation of HIV-1 Gag VLPs by transient transfection of HEK 293 suspension cell cultures using an optimized animal-derived component free medium. J Biotechnol 166:152–165CrossRefPubMedGoogle Scholar
  6. Costa A, Withers J, Rodrigues M, McLoughlin N, Henriques M, Oliveira R, Rudd P, Azeredo J (2013) The impact of cell adaptation to serum-free conditions on the glycosylation profile of a monoclonal antibody produced by chinese hamster ovary cells. Nat Biotechnol 30:563–572Google Scholar
  7. Dadehbeigi N, Ostad S, Faramarzi M, Ghahremani M (2008) Sex hormones affect the production of recombinant Factor IX in CHO and HEK-293 cell line. Biotechnol Lett 30:1909–1912CrossRefPubMedGoogle Scholar
  8. De La Salle H, Altenburger W, Elkaim R, Dott K, Dieterlé A, Drillien R, Cazenave J, Tolstoshev P, Lecocq J (1985) Active gamma- carboxylated human factor IX expressed using recombinant DNA techniques. Nature 316:268–270CrossRefPubMedGoogle Scholar
  9. Enjolras N, Dargaud Y, Perot E, Guillaume F, Becchi M, Negrier C (2012) Human hepatoma cell line HuH-7 is an effective cellular system to produce recombinant factor IX with improved post-translational modifications. Thromb Res 130:266–273CrossRefGoogle Scholar
  10. Fernandes A, Fontes A, Gonsales N, Swiech K, Picanco-Castro V, Faca S, Covas D (2011) Stable and high-level production of recombinant Factor IX in human hepatic cell line. Biotechnol Appl Biochem 58:243–249CrossRefGoogle Scholar
  11. Franchini M, Coppola A, Molinari AC, Santoro C, Schinco P, Speciale V, Tagliaferri A (2009) Forum on: the role of recombinant factor VIII in children with severe haemophilia A. Haemophilia 15:578–586CrossRefPubMedGoogle Scholar
  12. Geigert J (2004) The challenge of CMC regulatory compliance for biopharmaceuticals. Springer, New YorkCrossRefGoogle Scholar
  13. Ghaderi D, Zhang M, Hurtado-ziola N, Varki A (2012) Production platforms for biotherapeutic glycoproteins, occurrence impact and challenges of non-human sialylation. Biotechnol Genet Eng Rev 28:147–176CrossRefPubMedGoogle Scholar
  14. Gil C, Velander H, Van Cott E (2008) Analysis of the N-glycans of recombinant human Factor IX purified from transgenic pig milk. Glycobiology 18:526–539PubMedCentralCrossRefPubMedGoogle Scholar
  15. Hu A, Tseng Y, Weng T, Liao C, Wu J, Chou A, Chao H, Gu A, Chen J, Lin S, Hsiao C, Wu S, Chong P (2011) Production of inactived influenza H5N1 vaccines form MDCK cells in serum-free medium. PLoS One 6:e14578PubMedCentralCrossRefPubMedGoogle Scholar
  16. Khorshidi S, Zomorodipour A, Behmanesh M, Vatandoost J, Bos M (2015) Functional expression of the human coagulation factor IX using heterologous signal peptide and propeptide sequences in mammalian cell line. Biotechnol Lett 37:1773–1781CrossRefPubMedGoogle Scholar
  17. Lee H, Lin Y, Tu C, Yen C (2014) Recombinant human factor IX produced from transgenic porcine milk. Biomed Res Int 2014:315375PubMedCentralPubMedGoogle Scholar
  18. Lin C, Kao C, Miao C, Hamaguchi N, Wu H, Shi G, Liu Y, High K, Lin S (2010) Generation of novel fator IX using augmented clotting activities in vitro and in vivo. J Thromb Haemost 8:1773–1783CrossRefPubMedGoogle Scholar
  19. Liste-Calleja L, Lecina M, Cairo J (2014) HEK293 cell culture media study towards bioprocess optimization animal derived component free and animal derived component containing platforms. J Biosci Bioeng 117:471–477CrossRefPubMedGoogle Scholar
  20. Liu J, Jonebring A, Hagstrom J, Nystrom A, Lovgren A (2014) An improved expression of recombinant human factor IX by co-expression of GGCX, VKOR and furin. Protein J 33:174–183PubMedCentralCrossRefPubMedGoogle Scholar
  21. Meissner P, Pick H, Kulangara A, Chantellard A, Friedrich K, Wurm F (2001) Transient gene expression recombinant protein production with suspension-adapted HEK293-EBNA cells. Biotechnol Bioeng 75:197–203CrossRefPubMedGoogle Scholar
  22. Nadeau I, Sabatié J, Koehl M, Perrier M, Kamen A (2000) Human 293 Cell metabolism in low glutamine-supplied culture interpretation of metabolic changes through metabolic flux analysis. Metab Eng 2:277–292CrossRefPubMedGoogle Scholar
  23. Ozturk S, Kaseko G, Mahaworasilpa T, Coster H (2003) Adaptation of cell lines to serum-free culture medium. Hybrid Hybridomics 22:267–272CrossRefPubMedGoogle Scholar
  24. Perrot E, Enjolras N, Quellec S, Indalecio A, Girard J, Negrier C, Dargaud Y (2015) Expression and characterization of a novel human recombinant fator IX molecule with enhanced in vitro and in vivo clotting activity. Thromb Res 135:1017–1024CrossRefGoogle Scholar
  25. Rodrigues M, Cost A, Henriques M, Azeredo J, Oliveira R (2012) Comparison of commercial serum-free media for CHO-K1 cell growth and monoclonal antibody production. Int J Pharm 437:303–305CrossRefPubMedGoogle Scholar
  26. Serrato J, Hernandez V, Estrada-Mondaca P, Palomares L, Ramirez O (2007) Differences in the glycosylation profile of a monoclonal antibody produced by hybridomas cultured in serum-supplemented serum-free or chemically defined media. Biotechnol Appl Biochem 47:113–124CrossRefPubMedGoogle Scholar
  27. Swiech K, Picanco-Castro V, Covas D (2008) Human cells new platform for recombinant therapeutic protein production. Protein Expr Purif 84:147–153CrossRefGoogle Scholar
  28. Swiech K, Kamen A, Ansorge S, Durocher Y, Picanco-Castro V, Russo-Carbolante E, Neto M, Covas D (2011) Transient trasnfection of serum-free suspension HEK 293 cell culture for efficient production of human rFVIII. BMC Biotechnol 11:1–10CrossRefGoogle Scholar
  29. Vatandoost J, Zomorodipour A, Sadeghizadeh M, Aliyari R, Bos M, Ataei F (2011) Expression of biologically active human clotting factor IX in Drosophila S2 cells and γ-Carboxylation of a human vitamin K-dependent protein by the insect enzyme. Biotechnol Prog 28:45–51CrossRefPubMedGoogle Scholar
  30. Wajih N, Hutson S, Owen J, Wallin R (2005) Increased production of functional recombinant human clotting fator IX by baby hamster kidney cells engineered to overxpress VRORC1, the vitamin k 2,3-epoxide-reducing enzyme of the vitamin K cycle. J Biol Chem 36:31603–31607CrossRefGoogle Scholar
  31. Yekta A, Dalman A, Eftekhari-Yazdi P, Mohammad H, Shahverdi A, Fakheri R, Vazirinasab H, Daneshzadeh Z, Vojgani M, Zomorodipour A, Fatemi N, Vahabi Z, Mirshahvaladi S, Ataei F (2013) Production of transgenic goats expressing human coagulation factor IX in the mammary glands after nuclear transfer using transfected fetal fibroblast cells. Transgenic Res 22:1131–1142Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Robson Luis Ferraz do Amaral
    • 1
    • 2
  • Aline de Sousa Bomfim
    • 1
  • Mário Soares de Abreu-Neto
    • 2
  • Virgínia Picanço-Castro
    • 2
  • Elisa Maria de Sousa Russo
    • 1
  • Dimas Tadeu Covas
    • 2
    • 3
  • Kamilla Swiech
    • 1
    Email author
  1. 1.School of Pharmaceutical Sciences of Ribeirão PretoUniversity of São PauloRibeirão PrêtoBrazil
  2. 2.Regional Blood Center of Ribeirão PretoRibeirão PrêtoBrazil
  3. 3.Ribeirão Preto Medical SchoolUniversity of São PauloRibeirão PrêtoBrazil

Personalised recommendations