Biotechnology Letters

, Volume 38, Issue 2, pp 223–233 | Cite as

Application of magnetic nanoparticles in smart enzyme immobilization

  • Hamideh Vaghari
  • Hoda Jafarizadeh-MalmiriEmail author
  • Mojgan Mohammadlou
  • Aydin BerenjianEmail author
  • Navideh Anarjan
  • Nahideh Jafari
  • Shahin Nasiri


Immobilization of enzymes enhances their properties for efficient utilization in industrial processes. Magnetic nanoparticles, due to their high surface area, large surface-to-volume ratio and easy separation under external magnetic fields, are highly valued. Significant progress has been made to develop new catalytic systems that are immobilized onto magnetic nanocarriers. This review provides an overview of recent developments in enzyme immobilization and stabilization protocols using this technology. The current applications of immobilized enzymes based on magnetic nanoparticles are summarized and future growth prospects are discussed. Recommendations are also given for areas of future research.


Enzyme Enzyme stabilization Immobilization Magnetic nanoparticle Nanoparticles 


  1. Ansari SA, Husain Q (2012) Potential applications of enzymes immobilized on/in nano materials: a review. Biotechnol Adv 30:512–523CrossRefPubMedGoogle Scholar
  2. Ashtari K, Khajeh K, Fasihi J, Ashtari P, Ramazani A, Vali H (2012) Silica-encapsulated magnetic nanoparticles: enzyme immobilization and cytotoxic study. Int J Biol Macromol 50:1063–1069CrossRefPubMedGoogle Scholar
  3. Baig RN, Varma RS (2013) Magnetically retrievable catalysts for organic synthesis. Chem Commun 49:752–770CrossRefGoogle Scholar
  4. Bickerstaff GF (1997) Immobilization of enzymes and cells. Humana Press Inc., TotowaGoogle Scholar
  5. Chen T, Yang W, Guo Y, Yuan R, Xu L, Yan Y (2014) Enhancing catalytic performance of β-glucosidase via immobilization on metal ions chelated magnetic nanoparticles. Enzym Microb Technol 63:50–57CrossRefGoogle Scholar
  6. Chomoucka J, Drbohlavova J, Huska D, Adam V, Kizek R, Hubalek J (2010) Magnetic nanoparticles and targeted drug delivering. Pharm Res 62:144–149CrossRefGoogle Scholar
  7. Cirillo G, Nicoletta FP, Curcio M, Spizzirri UG, Picci N, Iemma F (2014) Enzyme immobilization on smart polymers: catalysis on demand. React Funct Polym 83:62–69CrossRefGoogle Scholar
  8. Dyal A, Loos K, Noto M, Chang SW, Spagnoli C, Shafi KV, Ulman A, Cowman M, Gross RA (2003) Activity of Candida rugosa lipase immobilized on γ-Fe2O3 magnetic nanoparticles. J Am Chem Soc 125:1684–1685CrossRefPubMedGoogle Scholar
  9. Galaev IY, Mattiasson B (1999) ‘Smart’polymers and what they could do in biotechnology and medicine. Trends Biotechnol 17:335–340CrossRefPubMedGoogle Scholar
  10. Galaev I, Mattiasson B (2001) Smart polymers for bioseparation and bioprocessing. CRC Press, New YorkGoogle Scholar
  11. Ghaz-Jahanian MA, Abbaspour-Aghdam F, Anarjan N, Berenjian A, Jafarizadeh-Malmiri H (2015) Application of chitosan-based nanocarriers in tumor-targeted drug delivery. Mol Biotechnol 57:201–218CrossRefPubMedGoogle Scholar
  12. Govan J, Gun’ko YK (2014) Recent advances in the application of magnetic nanoparticles as a support for homogeneous catalysts. J Nanomater 4:222–241CrossRefGoogle Scholar
  13. Hola K, Markova Z, Zoppellaro G, Tucek J, Zboril R (2015) Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances. Biotechnol Adv. doi: 10.1016/j.biotechadv.2015.02.003 PubMedGoogle Scholar
  14. Hsieh HC, Kuan IC, Lee SL, Tien GY, Wang YJ, Yu CY (2009) Stabilization of d-amino acid oxidase from Rhodosporidium toruloides by immobilization onto magnetic nanoparticles. Biotechnol Lett 31:557–563CrossRefPubMedGoogle Scholar
  15. Hu B, Pan J, Yu HL, Liu JW, Xu JH (2009) Immobilization of Serratia marcescens lipase onto amino-functionalized magnetic nanoparticles for repeated use in enzymatic synthesis of Diltiazem intermediate. Proc Biochem 44:1019–1024CrossRefGoogle Scholar
  16. Indira T, Lakshmi P (2010) Magnetic nanoparticles—a review. Int J Pharm Sci Nanotechnol 3:1035–1042Google Scholar
  17. Jafarizadeh-Malmiri H, Ghaz-Jahanian MA, Berenjian A (2012) Potential applications of chitosan nanoparticles as novel supports in enzyme immobolization. Am J Biochem Biotechnol 8:203–219CrossRefGoogle Scholar
  18. Janecek S (1993) Sterategies for obtaining stable enzymes. Process Biochem 28:435–445CrossRefGoogle Scholar
  19. Jordan J, Kumar CS, Theegala C (2011) Preparation and characterization of cellulase-bound magnetite nanoparticles. J Mol Catal B 68:139–146CrossRefGoogle Scholar
  20. Kim J, Grate JW, Wang P (2006) Nanostructures for enzyme stabilization. Chem Eng Sci 61:1017–1026CrossRefGoogle Scholar
  21. Kouassi GK, Irudayaraj J, McCarty G (2005) Examination of cholesterol oxidase attachment to magnetic nanoparticles. J Nanobiotechnol 3:1–9CrossRefGoogle Scholar
  22. Kuroiwa T, Noguchi Y, Nakajima M, Sato S, Mukataka S, Ichikawa S (2008) Production of chitosan oligosaccharides using chitosanase immobilized on amylose-coated magnetic nanoparticles. Proc Biochem 43:62–69CrossRefGoogle Scholar
  23. Lin S, Yun D, Qi D, Deng C, Li Y, Zhang X (2008) Novel microwave-assisted digestion by trypsin-immobilized magnetic nanoparticles for proteomic analysis. J Proteome Res 7:1297–1307CrossRefPubMedGoogle Scholar
  24. Mahajan A, Aggarwal G (2011) Smart polymers: innovations in novel drug delivery. Int J Drug Dev Res 3:16–30Google Scholar
  25. Mosafa L, Moghadam M, Shahedi M (2013) Papain enzyme supported on magnetic nanoparticles: preparation, characterization and application in the fruit juice clarification. Chin J Catal 34:1897–1904CrossRefGoogle Scholar
  26. Najafi S, Pajhouhnia Z, Ahmadi O, Berenjian A, Jafarizadeh-Malmiri H (2014) Chitosan nanoparticles and their applications in drug delivery: review. Curr Res Drug Discov 1:17–25CrossRefGoogle Scholar
  27. Namdeo M, Bajpai S (2009) Immobilization of α-amylase onto cellulose-coated magnetite (CCM) nanoparticles and preliminary starch degradation study. J Mol Catal B 59:134–139CrossRefGoogle Scholar
  28. Osuna Y, Sandoval J, Saade H, López RG, Martinez JL, Colunga EM, de la Cruz G, Segura EP, Arévalo FJ, Zon MA, Fernandez H, Ilyina A (2015) Immobilization of Aspergillus niger lipase on chitosan-coated magnetic nanoparticles using two covalent-binding methods. Bioproc Biosyst Eng 38:1437–1445CrossRefGoogle Scholar
  29. Petkar M, Lali A, Caimi P, Daminati M (2006) Immobilization of lipases for non-aqueous synthesis. J Mol Catal B 39:83–90CrossRefGoogle Scholar
  30. Saiyed Z, Sharma S, Godawat R, Telang S, Ramchand C (2007) Activity and stability of alkaline phosphatase (ALP) immobilized onto magnetic nanoparticles (Fe3 O4). J Biotechnol 131:240–244CrossRefPubMedGoogle Scholar
  31. Shamim N (2007) Thermosensitive nanomagnetic particles for bio-separation. PhD ThesisGoogle Scholar
  32. Shaw SY, Chen YJ, Ou JJ, Ho L (2006) Preparation and characterization of Pseudomonas putida esterase immobilized on magnetic nanoparticles. Enzym Microb Technol 39:1089–1095CrossRefGoogle Scholar
  33. Sheldon RA, van Pelt S (2013) Enzyme immobilisation in biocatalysis: why, what and how. Chem Soc Rev 42:6223–6235CrossRefPubMedGoogle Scholar
  34. Singh RK, Tiwari MK, Singh R, Lee JK (2013) From protein engineering to immobilization: promising strategies for the upgrade of industrial enzymes. Int J Mol Sci 14:1232–1277CrossRefPubMedPubMedCentralGoogle Scholar
  35. Straathof AJ, Panke S, Schmid A (2002) The production of fine chemicals by biotransformations. Curr Opin Biotechnol 13:548–556CrossRefPubMedGoogle Scholar
  36. Vatta LL, Sanderson RD, Koch KR (2006) Magnetic nanoparticles: properties and potential applications. Pure Appl Chem 78:1793–1801CrossRefGoogle Scholar
  37. Wiemann LO, Weisshaupt P, Nieguth R, Thum O, Ansorge-Schumacher MB (2009) Enzyme stabilization by deposition of silicone coatings. Org Process Res Dev 13:617–620CrossRefGoogle Scholar
  38. Willard M, Kurihara L, Carpenter E, Calvin S, Harris V (2004) Chemically prepared magnetic nanoparticles. Int Mater Rev 49:125–170CrossRefGoogle Scholar
  39. Xie W, Ma N (2010) Enzymatic transesterification of soybean oil by using immobilized lipase on magnetic nano-particles. Biomass Bioenerg 34:890–896CrossRefGoogle Scholar
  40. Xu J, Sun J, Wang Y, Sheng J, Wang F, Sun M (2014) Application of iron magnetic nanoparticles in protein immobilization. Molecules 19:11465–11486CrossRefPubMedGoogle Scholar
  41. Yiu HH, Keane MA (2012) Enzyme–magnetic nanoparticle hybrids: new effective catalysts for the production of high value chemicals. J Chem Technol Biotechnol 87:583–594CrossRefGoogle Scholar
  42. Zhou Y, Pan S, Wei X, Wang L, Liu Y (2013) Immobilization of β-glucosidase onto magnetic nanoparticles and evaluation of the enzymatic properties. BioResources 8:2605–2619Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Hamideh Vaghari
    • 1
  • Hoda Jafarizadeh-Malmiri
    • 1
    Email author
  • Mojgan Mohammadlou
    • 1
  • Aydin Berenjian
    • 2
    Email author
  • Navideh Anarjan
    • 3
  • Nahideh Jafari
    • 1
  • Shahin Nasiri
    • 1
  1. 1.Faculty of Chemical EngineeringSahand University of TechnologyTabrizIran
  2. 2.Faculty of Science and Engineering, School of EngineeringUniversity of WaikatoHamiltonNew Zealand
  3. 3.Department of Chemical Engineering, Faculty of Engineering, Tabriz BranchIslamic Azad UniversityTabrizIran

Personalised recommendations