Biotechnology Letters

, Volume 38, Issue 2, pp 203–211 | Cite as

Three-dimensional bioprinting in tissue engineering and regenerative medicine

Review

Abstract

With the advances of stem cell research, development of intelligent biomaterials and three-dimensional biofabrication strategies, highly mimicked tissue or organs can be engineered. Among all the biofabrication approaches, bioprinting based on inkjet printing technology has the promises to deliver and create biomimicked tissue with high throughput, digital control, and the capacity of single cell manipulation. Therefore, this enabling technology has great potential in regenerative medicine and translational applications. The most current advances in organ and tissue bioprinting based on the thermal inkjet printing technology are described in this review, including vasculature, muscle, cartilage, and bone. In addition, the benign side effect of bioprinting to the printed mammalian cells can be utilized for gene or drug delivery, which can be achieved conveniently during precise cell placement for tissue construction. With layer-by-layer assembly, three-dimensional tissues with complex structures can be printed using converted medical images. Therefore, bioprinting based on thermal inkjet is so far the most optimal solution to engineer vascular system to the thick and complex tissues. Collectively, bioprinting has great potential and broad applications in tissue engineering and regenerative medicine. The future advances of bioprinting include the integration of different printing mechanisms to engineer biphasic or triphasic tissues with optimized scaffolds and further understanding of stem cell biology.

Keywords

3D-Printing Biomaterials Bioprinting Bone Cartilage Muscle Stem cells Tissue engineering 

References

  1. Asano T, Ishizua T, Yawo H (2012) Optically controlled contraction of photosensitive skeletal muscle cells. Biotechnol Bioeng 109:199–204CrossRefPubMedGoogle Scholar
  2. Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB (2006) Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 367:1241–1246CrossRefPubMedGoogle Scholar
  3. Auger FA, Gibot L, Lacroix D (2013) The pivotal role of vascularization in tissue engineering. Annu Rev Biomed Eng 15:177–200CrossRefPubMedGoogle Scholar
  4. Barron JA, Wu P, Ladouceur HD, Ringeisen BR (2004) Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns. Biomed Microdevices 6:139–147CrossRefPubMedGoogle Scholar
  5. Beeson R (1998) Thermal (TIJ) or piezo? Who cares? IMI 7th annual ink jet printing conferenceGoogle Scholar
  6. Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415:198–205CrossRefPubMedGoogle Scholar
  7. Boland T, Cui X, Aho M, Baicu C, Zile M (2006a) Image based printing of structured biomaterials for realizing complex 3D cardiovascular constructs. J Imaging Sci Technol 2:86–88Google Scholar
  8. Boland T, Xu T, Damon B, Cui X (2006b) Application of inkjet printing to tissue engineering. Biotechnol J 1:910–917CrossRefPubMedGoogle Scholar
  9. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331:889–895CrossRefPubMedGoogle Scholar
  10. Bruder SP, Jaiswal N, Haynesworth SE (1997) Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 64:278–294CrossRefPubMedGoogle Scholar
  11. Bryant SJ, Anseth KS (2002) Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels. J Biomed Mater Res 59:63–72CrossRefPubMedGoogle Scholar
  12. Canfield B, Clayton H, Yeung KWW (1997) Method and apparatus for reducing the size of drops ejected from a thermal ink jet printhead. (US5673069)Google Scholar
  13. Caplan AI, Bruder SP (2001) Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med 7:259–264CrossRefPubMedGoogle Scholar
  14. Catelas I, Sese N, Wu BM, Dunn JC, Helgerson S, Tawil B (2006) Human mesenchymal stem cell proliferation and osteogenic differentiation in fibrin gels in vitro. Tissue Eng 12:2385–2396CrossRefPubMedGoogle Scholar
  15. Catros S, Guillemot F, Nandakumar A, Ziane S, Moroni L, Habibovic P, van Blitterswijk C, Rousseau B, Chassande O, Amedee J, Fricain JC (2012) Layer-by-layer tissue microfabrication supports cell proliferation in vitro and in vivo. Tissue Eng Part C 18:62–70CrossRefGoogle Scholar
  16. Cohen DL, Malone E, Lipson H, Bonassar LJ (2006) Direct freeform fabrication of seeded hydrogels in arbitrary geometries. Tissue Eng 12:1325–1335CrossRefPubMedGoogle Scholar
  17. Colvin-Adams M, Smith JM, Heubner BM, Skeans MA, Edwards LB, Waller CD, Callahan ER, Snyder JJ, Israni AK, Kasiske BL (2015) OPTN/SRTR 2013 annual data report: heart. Am J Transpl 15(S2):1–28CrossRefGoogle Scholar
  18. Cui X, Boland T (2008) Simultaneous deposition of human microvascular endothelial cells and biomaterials for human microvasculature fabrication using inkjet printing. NIP24/digital fabrication 2008: 24th international conference on digital printing technologies. Tech Prog Proc 24:480–483Google Scholar
  19. Cui X, Boland T (2009) Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 30:6221–6227CrossRefPubMedGoogle Scholar
  20. Cui X, Dean D, Ruggeri ZM, Boland T (2010) Cell damage evaluation of thermal inkjet printed Chinese hamster ovary cells. Biotechnol Bioeng 106:963–969CrossRefPubMedGoogle Scholar
  21. Cui X, Breitenkamp K, Finn MG, Lotz M, Colwell CW Jr (2011) Direct human cartilage repair using thermal inkjet printing technology. Osteoarthr Cartil 19:S47–S48CrossRefGoogle Scholar
  22. Cui X, Boland T, D’Lima DD, Lotz MK (2012a) Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat Drug Deliv Formul 6:149–155CrossRefPubMedPubMedCentralGoogle Scholar
  23. Cui X, Breitenkamp K, Finn MG, Lotz M, D’Lima DD (2012b) Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng Part A 18:1304–1312CrossRefPubMedPubMedCentralGoogle Scholar
  24. Cui X, Breitenkamp K, Lotz M, D’Lima D (2012c) Synergistic action of fibroblast growth factor-2 and transforming growth factor-beta1 enhances bioprinted human neocartilage formation. Biotechnol Bioeng 109:2357–2368CrossRefPubMedPubMedCentralGoogle Scholar
  25. Cui X, Hasegawa A, Lotz M, D’Lima D (2012d) Structured three-dimensional co-culture of mesenchymal stem cells with meniscus cells promotes meniscal phenotype without hypertrophy. Biotechnol Bioeng 109:2369–2380CrossRefPubMedPubMedCentralGoogle Scholar
  26. Cui X, Gao G, Qiu Y (2013) Accelerated myotube formation using bioprinting technology for biosensor applications. Biotechnol Lett 35:315–321CrossRefPubMedGoogle Scholar
  27. Cui X, Gao G, Yonezawa T, Dai G (2014) Human cartilage tissue fabrication using three-dimensional inkjet printing technology. J Vis Exp 88:e51294. doi:10.3791/51294 Google Scholar
  28. de Jong J, de Bruin G, Reinten H, van den Berg M, Wijshoff H, Versluis M, Lohse D (2006) Air entrapment in piezo-driven inkjet printheads. J Acoust Soc Am 120:1257–1265CrossRefGoogle Scholar
  29. Deitch S, Kunkle C, Cui X, Boland T, Dean D (2008) Collagen matrix alignment using inkjet printer technology. Mater Res Soc Symp Proc 1094:52–57CrossRefGoogle Scholar
  30. Di BC, Fosang A, Donati DM, Wallace GG, Choong PF (2015) 3D-bioprinting of cartilage for orthopedic surgeons: reading between the Lines. Front Surg 2:39Google Scholar
  31. Elisseeff J, McIntosh W, Anseth K, Riley S, Ragan P, Langer R (2000) Photoencapsulation of chondrocytes in poly(ethylene oxide)-based semi-interpenetrating networks. J Biomed Mater Res 51:164–171CrossRefPubMedGoogle Scholar
  32. Fujita H, Shimizu K, Nagamori E (2010) Novel method for measuring active tension generation by C2C12 myotube using UV-crosslinked collagen film. Biotechnol Bioeng 106:482–489PubMedGoogle Scholar
  33. Gao G, Schilling AF, Yonezawa T, Wang J, Dai G, Cui X (2014) Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells. Biotechnol J 9:1304–1311CrossRefPubMedGoogle Scholar
  34. Gao G, Schilling AF, Hubbell K, Yonezawa T, Truong D, Hong Y, Dai G, Cui X (2015a) Improved properties of bone and cartilage tissue from 3D inkjet-bioprinted human mesenchymal stem cells by simultaneous deposition and photocrosslinking in PEG-GelMA. Biotechnol Lett. doi:10.1007/s10529-015-1921-2 Google Scholar
  35. Gao G, Yonezawa T, Hubbell K, Dai G, Cui X (2015b) Inkjet-bioprinted acrylated peptides and PEG hydrogel with human mesenchymal stem cells promote robust bone and cartilage formation with minimal printhead clogging. Biotechnol J. doi:10.1002/biot.201400635 Google Scholar
  36. Goldmann T, Gonzalez JS (2000) DNA-printing: utilization of a standard inkjet printer for the transfer of nucleic acids to solid supports. J Biochem Biophys Methods 42:105–110CrossRefPubMedGoogle Scholar
  37. Guillemot F, Souquet A, Catros S, Guillotin B (2010a) Laser-assisted cell printing: principle, physical parameters versus cell fate and perspectives in tissue engineering. Nanomedicine (Lond) 5:507–515CrossRefGoogle Scholar
  38. Guillemot F, Souquet A, Catros S, Guillotin B, Lopez J, Faucon M, Pippenger B, Bareille R, Remy M, Bellance S, Chabassier P, Fricain JC, Amedee J (2010b) High-throughput laser printing of cells and biomaterials for tissue engineering. Acta Biomater 6:2494–2500CrossRefPubMedGoogle Scholar
  39. Harms H, Wells MC, van der Meer JR (2006) Whole-cell living biosensors–are they ready for environmental application? Appl Microbiol Biotechnol 70:273–280CrossRefPubMedGoogle Scholar
  40. Hock SW, Johnson DA, Van Veen MA (1996). Print quality optimization for a color ink-jet printer by using a larger nozzle for the black ink only. US Patent: 5521622Google Scholar
  41. Hoenig E, Winkler T, Mielke G, Paetzold H, Schuettler D, Goepfert C, Machens HG, Morlock MM, Schilling AF (2011) High amplitude direct compressive strain enhances mechanical properties of scaffold-free tissue-engineered cartilage. Tissue Eng Part A 17:1401–1411CrossRefPubMedGoogle Scholar
  42. Hsieh FY, Lin HH, Hsu SH (2015) 3D-bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair. Biomaterials 71:48–57CrossRefPubMedGoogle Scholar
  43. Hu C, Uchida T, Tercero C, Ikeda S, Ooe K, Fukuda T, Arai F, Negoro M, Kwon G (2012) Development of biodegradable scaffolds based on magnetically guided assembly of magnetic sugar particles. J Biotechnol 159:90–98CrossRefPubMedGoogle Scholar
  44. Hudson KR, Cowan PB, Gondek JS (2000). Ink drop volume variance compensation for inkjet printing. US Patent: 6042211Google Scholar
  45. Hunziker EB (2002) Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthr Cartil 10:432–463CrossRefPubMedGoogle Scholar
  46. Hunziker EB, Driesang IM (2003) Functional barrier principle for growth-factor-based articular cartilage repair. Osteoarthr Cartil 11:320–327CrossRefPubMedGoogle Scholar
  47. Iwami K, Noda T, Ishida K, Morishima K, Nakamura M, Umeda N (2010) Bio rapid prototyping by extruding/aspirating/refilling thermoreversible hydrogel. Biofabrication 2:014108CrossRefPubMedGoogle Scholar
  48. Jain RK, Au P, Tam J, Duda DG, Fukumura D (2005) Engineering vascularized tissue. Nat Biotechnol 23:821–823CrossRefPubMedGoogle Scholar
  49. Jiang J, Tang A, Ateshian GA, Guo XE, Hung CT, Lu HH (2010) Bioactive stratified polymer ceramic-hydrogel scaffold for integrative osteochondral repair. Ann Biomed Eng 38:2183–2196CrossRefPubMedGoogle Scholar
  50. Jones AC, Arns CH, Sheppard AP, Hutmacher DW, Milthorpe BK, Knackstedt MA (2007) Assessment of bone ingrowth into porous biomaterials using MICRO-CT. Biomaterials 28:2491–2504CrossRefPubMedGoogle Scholar
  51. Kalson NS, Gikas PD, Briggs TWR (2010) Current strategies for knee cartilage repair. Int J Clin Pract 64:1444–1452CrossRefPubMedGoogle Scholar
  52. Kang HW, Park JH, Kang TY, Seol YJ, Cho DW (2012) Unit cell-based computer-aided manufacturing system for tissue engineering. Biofabrication 4:015005CrossRefPubMedGoogle Scholar
  53. Khanarian NT, Jiang J, Wan LQ, Mow VC, Lu HH (2011) A hydrogel-mineral composite scaffold for osteochondral interface tissue engineering. Tissue Eng Part A 18(5–6):533–545PubMedPubMedCentralGoogle Scholar
  54. Kim TK, Sharma B, Williams CG, Ruffner MA, Malik A, McFarland EG, Elisseeff JH (2003) Experimental model for cartilage tissue engineering to regenerate the zonal organization of articular cartilage. Osteoarthr Cartil 11:653–664CrossRefPubMedGoogle Scholar
  55. Kim WR, Lake JR, Smith JM, Skeans MA, Schladt DP, Edwards EB, Harper AM, Wainright JL, Synder JJ, Israni AK, Kasiske BL (2015) OPTN/SRTR 2013 annual data report: liver. Am J Transpl 15(S2):1–28CrossRefGoogle Scholar
  56. Kon E, Muraglia A, Corsi A, Bianco P, Marcacci M, Martin I, Boyde A, Ruspantini I, Chistolini P, Rocca M, Giardino R, Cancedda R, Quarto R (2000) Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res 49:328–337CrossRefPubMedGoogle Scholar
  57. Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926CrossRefPubMedGoogle Scholar
  58. Leboy PS, Beresford JN, Devlin C, Owen ME (1991) Dexamethasone induction of osteoblast mRNAs in rat marrow stromal cell cultures. J Cell Physiol 146:370–378CrossRefPubMedGoogle Scholar
  59. Levenberg S, Rouwkema J, Macdonald M, Garfein ES, Kohane DS, Darland DC, Marini R, van Blitterswijk CA, Mulligan RC, D’Amore PA, Langer R (2005) Engineering vascularized skeletal muscle tissue. Nat Biotechnol 23:879–884CrossRefPubMedGoogle Scholar
  60. Lozano R, Stevens L, Thompson BC, Gilmore KJ, Gorkin R, Stewart EM, in het Panhuis M, Romero-Ortega M, Wallace GG (2015) 3D-printing of layered brain-like structures using peptide modified gellan gum substrates. Biomaterials 67:264–273CrossRefPubMedGoogle Scholar
  61. Ma PX, Choi JW (2001) Biodegradable polymer scaffolds with well-defined interconnected spherical pore network. Tissue Eng 7:23–33CrossRefPubMedGoogle Scholar
  62. Matas AJ, Smith JM, Skeans MA, Thompson B, Gustafson SK, Stewart DE, Cherikh WS, Wainright JL, Boyle G, Snyder JJ, Israni AK, Kasiske BL (2015) OPTN/SRTR 2013 annual data report: kidney. Am J Transpl 15(S2):1–34CrossRefGoogle Scholar
  63. Miller JB (1990) Myogenic programs of mouse muscle cell lines: expression of myosin heavy chain isoforms, MyoD1, and myogenin. J Cell Biol 111:1149–1159CrossRefPubMedGoogle Scholar
  64. Mironov V, Visconti RP, Kasyanov V, Forgacs G, Drake CJ, Markwald RR (2009) Organ printing: tissue spheroids as building blocks. Biomaterials 30:2164–2174CrossRefPubMedPubMedCentralGoogle Scholar
  65. Mohebi MM, Evans JRG (2002) A drop-on-demand ink-jet printer for combinatorial libraries and functionally graded ceramics. J Comb Chem 4:267–274CrossRefPubMedGoogle Scholar
  66. Moon S, Hasan SK, Song YS, Xu F, Keles HO, Manzur F, Mikkilineni S, Hong JW, Nagatomi J, Haeggstrom E, Khademhosseini A, Demirci U (2010) Layer by layer three-dimensional tissue epitaxy by cell-laden hydrogel droplets. Tissue Eng Part C 16:157–166CrossRefGoogle Scholar
  67. Mourino V, Boccaccini AR (2010) Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. J R Soc Interface 7:209–227CrossRefPubMedPubMedCentralGoogle Scholar
  68. Mow VC, Hayes WC (1997) Basic orthopaedic biomechanics. Lippincott Williams & Wilkins, Philadelphia, p 275Google Scholar
  69. Nerem RM, Seliktar D (2001) Vascular tissue engineering. Annu Rev Biomed Eng 3:225–243CrossRefPubMedGoogle Scholar
  70. Odde DJ, Renn MJ (1999) Laser-guided direct writing for applications in biotechnology. Trends Biotechnol 17:385–389CrossRefPubMedGoogle Scholar
  71. Odde DJ, Renn MJ (2000) Laser-guided direct writing of living cells. Biotechnol Bioeng 67:312–318CrossRefPubMedGoogle Scholar
  72. Okamoto T, Suzuki T, Yamamoto N (2000) Microarray fabrication with covalent attachment of DNA using bubble jet technology. Nat Biotechnol 18:438–441CrossRefPubMedGoogle Scholar
  73. Oreffo RO, Triffitt JT (1999) Future potentials for using osteogenic stem cells and biomaterials in orthopedics. Bone 25:5S–9SCrossRefPubMedGoogle Scholar
  74. Patel M, Patel KJ, Caccamese JF, Coletti DP, Sauk JJ, Fisher JP (2010) Characterization of cyclic acetal hydroxyapatite nanocomposites for craniofacial tissue engineering. J Biomed Mater Res A 94:408–418PubMedGoogle Scholar
  75. Rasanen P, Paavolainen P, Sintonen H, Koivisto AM, Marja B, Ryynanen OP, Roine RP (2007) Effectiveness of hip or knee replacement surgery in terms of quality-adjusted life years and costs. Acta Orthop 78:108–115CrossRefPubMedGoogle Scholar
  76. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431CrossRefPubMedGoogle Scholar
  77. Rickard DJ, Kassem M, Hefferan TE, Sarkar G, Spelsberg TC, Riggs BL (1996) Isolation and characterization of osteoblast precursor cells from human bone marrow. J Bone Miner Res 11:312–324CrossRefPubMedGoogle Scholar
  78. Seetharam R, Sharma SK (1991) Purification and analysis of recombinant proteins. Marcel Dekker, New York, p 69Google Scholar
  79. Seitz H, Rieder W, Irsen S, Leukers B, Tille C (2005) Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. J Biomed Mater Res B 74:782–788CrossRefGoogle Scholar
  80. Shapiro F, Koide S, Glimcher MJ (1993) Cell origin and differentiation in the repair of full-thickness defects of articular-cartilage. J Bone Joint Surg Am 75(4):532–553PubMedGoogle Scholar
  81. Shor L, Guceri S, Chang R, Gordon J, Kang Q, Hartsock L, An Y, Sun W (2009) Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering. Biofabrication 1:015003CrossRefPubMedGoogle Scholar
  82. Sirringhaus H, Kawase T, Friend RH, Shimoda T, Inbasekaran M, Wu W, Woo EP (2000) High-resolution inkjet printing of all-polymer transistor circuits. Science 290:2123–2126CrossRefPubMedGoogle Scholar
  83. Spalazzi JP, Doty SB, Moffat KL, Levine WN, Lu HH (2006) Development of controlled matrix heterogeneity on a triphasic scaffold for orthopedic interface tissue engineering. Tissue Eng 12:3497–3508CrossRefPubMedGoogle Scholar
  84. Spalazzi JP, Dagher E, Doty SB, Guo XE, Rodeo SA, Lu HH (2008) In vivo evaluation of a multiphased scaffold designed for orthopaedic interface tissue engineering and soft tissue-to-bone integration. J Biomed Mater Res A 86:1–12CrossRefPubMedGoogle Scholar
  85. Tanaka Y, Sato K, Shimizu T, Yamato M, Okano T, Kitamori T (2007) A micro-spherical heart pump powered by cultured cardiomyocytes. Lab Chip 7:207–212CrossRefPubMedGoogle Scholar
  86. Tirella A, Vozzi F, De MC, Vozzi G, Sandri T, Sassano D, Cognolato L, Ahluwalia A (2011) Substrate stiffness influences high resolution printing of living cells with an ink-jet system. J Biosci Bioeng 112:79–85CrossRefPubMedGoogle Scholar
  87. Triffitt JT (2002) Osteogenic stem cells and orthopedic engineering: summary and update. J Biomed Mater Res 63:384–389CrossRefPubMedGoogle Scholar
  88. Xi J, Schmidt JJ, Montemagno CD (2005) Self-assembled microdevices driven by muscle. Nat Mater 4:180–184CrossRefPubMedGoogle Scholar
  89. Yaffe D, Saxel O (1977) A myogenic cell line with altered serum requirements for differentiation. Differentiation 7:159–166CrossRefPubMedGoogle Scholar
  90. Zhang Z, Xiong R, Mei R, Huang Y, Chrisey DB (2015) Time-resolved imaging study of jetting dynamics during laser printing of viscoelastic alginate solutions. Langmuir 31:6447–6456CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.School of Chemistry, Chemical Engineering and Life SciencesWuhan University of TechnologyWuhanChina
  2. 2.Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroyUSA
  3. 3.Stemorgan TherapeuticsTroyUSA

Personalised recommendations