Biotechnology Letters

, Volume 38, Issue 1, pp 1–22 | Cite as

Biofilms and human health

Review

Abstract

A biofilm can be defined as a surface-attached (sessile) community of microorganisms embedded and growing in a self-produced matrix of extracellular polymeric substances. These biofilm communities can be found in medical, industrial and natural environments, and can also be engineered in vitro for various biotechnological applications. Biofilms play a significant role in the transmission and persistence of human disease especially for diseases associated with inert surfaces, including medical devices for internal or external use. Biofilm infections on implants or in-dwelling devices are difficult to eradicate because of their much better protection against macrophages and antibiotics, compared to free living cells, leading to severe clinical complications often with lethal outcome. Recent developments in nanotechnology have provided novel approaches to preventing and dispersing biofilm related infections and potentially providing a novel method for fighting infections that is nondrug related.

Keywords

Biofilm Quorum sensing Indwelling medical devices Nanobiotechnology 

References

  1. Allesen-Holm M, Barken KB, Yang L et al (2006) A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol 59:1114–1128PubMedCrossRefGoogle Scholar
  2. Allison DG (2003) The biofilm matrix. Biofoul 19:139–150CrossRefGoogle Scholar
  3. Anderl JN, Zahller J, Roe F et al (2003) Role of nutrient limitation and stationary-phase existence in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Ag Chemother 47:1251–1256CrossRefGoogle Scholar
  4. Anwar H, Strap JL, Chen K et al (1992) Dynamic interactions of biofilms of mucoid Pseudomonas aeruginosa with tobramycin and piperacillin. Antimicrob Ag Chemother 36:1208–1214CrossRefGoogle Scholar
  5. Archibald L, Phillips L, Monnet D et al (1997) Antimicrobial resistance in isolates from inpatients and outpatients in the United States: increasing importance of the intensive care unit. Clin Infect Dis 24:211–215PubMedCrossRefGoogle Scholar
  6. Atkinson S, Throup JP, Stewart GS et al (1999) A hierarchical quorum-sensing system in Yersinia pseudotuberculosis is involved in the regulation of motility and clumping. Mol Microbiol 33:1267–1277PubMedCrossRefGoogle Scholar
  7. Bagge N, Schuster M, Hentzer M et al (2004) Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and β-lactamase and alginate production. Antimicrob Ag Chemother 48:1175–1187CrossRefGoogle Scholar
  8. Bavington C, Page C (2005) Stopping bacterial adhesion: a novel approach to treating infections. Respir Intern Rev Thorac Dis 72:335–344Google Scholar
  9. Beaudoin D, Bryers JD, Cunningham AB et al (1998b) Mobilization of broad host range plasmid from Pseudomonas putida to established biofilm of Bacillus azotoformans. II. Modeling. Biotechnol Bioeng 57:280–286PubMedCrossRefGoogle Scholar
  10. Beaudoin D, Bryers JD, Cunningham AB et al (1998a) Mobilization of broad host range plasmid from Pseudomonas putida to established biofilm of Bacillus azotoformans. I. Experiments. Biotechnol Bioeng 57:272–279PubMedCrossRefGoogle Scholar
  11. Beloin C, Roux A, Ghigo JM (2008) Escherichia coli biofilms. Curr Top Microbiol Immunol 322:249–289PubMedPubMedCentralGoogle Scholar
  12. Ben Jacob E, Aharonov Y, Shapira Y (2004) Bacteria harnessing complexity. Biofilms 1:239–263CrossRefGoogle Scholar
  13. Beveridge TJ (1999) Structures of gram negative cell walls and their derived membrane vesicles. J Bacteriol 181:4725–4733PubMedPubMedCentralGoogle Scholar
  14. Bhargava A, Gupta VK, Singh AK, Gaur R (2012) Microbes for heavy metal remediation. In: Gaur R, Mehrotra S, Pandey RR (eds) Microbial applications. IK International Publ, New Delhi, pp 167–177Google Scholar
  15. Bhaskar PV, Bhosle NB (2005) Microbial extracellular polymeric substances in marine biogeochemical processes. Curr Sci 88:47–53Google Scholar
  16. Bielecki P, Glik J, Kawecki M et al (2008) Towards understanding Pseudomonas aeruginosa burn wound infections by profiling gene expression. Biotechnol Lett 30:777–790PubMedCrossRefGoogle Scholar
  17. van Bodman SB, Willey JM, Diggle SP (2008) Cell-cell communication in bacteria: united we stand. J Bacteriol 190:4377–4391CrossRefGoogle Scholar
  18. Di Bonaventura G, Pompilio A, Picciani C et al (2006) Biofilm formation by the emerging fungal pathogen Trichosporon asahii: development, architecture, and antifungal resistance. Antimicrob Ag Chemother 50:3269–3276CrossRefGoogle Scholar
  19. Bordi C, de Bentzmann S (2011) Hacking into bacterial biofilms. Ann Intensive Care 1:19PubMedPubMedCentralCrossRefGoogle Scholar
  20. Borlee BR, Goldman AD, Murakami K et al (2010) Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix. Mol Microbiol 75:827–842PubMedPubMedCentralCrossRefGoogle Scholar
  21. Bosio S, Leekha S, Gamb SI et al (2012) Mycobacterium fortuitum prosthetic valve endocarditis: a case for the pathogenetic role of biofilms. Cardiovasc Path 21:361–364CrossRefGoogle Scholar
  22. Bruder-Nascimento A, Camargo CH, Lia Mondelli A et al (2014) Candida species biofilm and Candida albicans ALS3 polymorphisms in clinical isolates. Braz J Microbiol 45:1371–1377PubMedPubMedCentralCrossRefGoogle Scholar
  23. Brugnoni LI, Lozano JE, Cubitto MA (2007) Potential of yeast isolated from apple juice to adhere to stainless steel surfaces in the apple juice processing industry. Intern J Food Res 40:332–340CrossRefGoogle Scholar
  24. Bryant MP, Wolin EA, Wolin MJ, Wolfe RS (1967) Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Arch Microbiol 59:20–31Google Scholar
  25. Böckelmann U, Janke A, Kuhn R et al (2006) Bacterial extracellular DNA forming a defined network-like structure. FEMS Microbiol Lett 262:31–38PubMedCrossRefGoogle Scholar
  26. Carmen JC, Roeder BL, Nelson JL (2004) Ultrasonically enhanced vancomycin activity against Staphylococcus epidermidis biofilms in vivo. J Biomater Appl 18:237–245PubMedPubMedCentralCrossRefGoogle Scholar
  27. Carpentier B, Cerf O (1993) Biofilms and their consequences, with particular reference to hygiene in the food industry. J Appl Bacteriol 75:499–511PubMedCrossRefGoogle Scholar
  28. de Carvalho CCCR (2007) Biofilms: recent developments on an old battle. Recent Patents Biotechnol 1:49–57CrossRefGoogle Scholar
  29. Chang WS, van de Mortel M, Nielsen L et al (2007) Alginate production by Pseudomonas putida creates a hydrated microenvironment and contributes to biofilm architecture and stress tolerance under water-limiting conditions. J Bacteriol 189:8290–8299PubMedPubMedCentralCrossRefGoogle Scholar
  30. Characklis WG (1973) Attached microbial growths-II. Frictional resistance due to microbial slimes. Water Res 7:1249–1258CrossRefGoogle Scholar
  31. Chen X, Stewart PS (2002) Role of electrostatic interactions in cohesion of bacterial biofilms. Appl Microbiol Biotechnol 59:718–720PubMedCrossRefGoogle Scholar
  32. Chen M, Yu Q, Sun H (2013) Novel strategies for the prevention and treatment of biofilm related infections. Intern J Mol Sci 14:18488–18501CrossRefGoogle Scholar
  33. Christensen BB, Sternberg C, Andersen JB et al (1998) Establishment of new genetic traits in a microbial biofilm community. Appl Environ Microbiol 64:2247–2255PubMedPubMedCentralGoogle Scholar
  34. Chávez de Paz LE, Resin A, Howard KA et al (2011) Antimicrobial effect of chitosan nanoparticles on Streptococcus mutans biofilms. Appl Environ Microbiol 77:3892–3895PubMedPubMedCentralCrossRefGoogle Scholar
  35. Claverys JP, Prudhomme M, Martin B (2006) Induction of competence regulons as a general response to stress in Gram-positive bacteria. Ann Rev Microbiol 60:451–475CrossRefGoogle Scholar
  36. Conti E, Flaibani A, O’Regan M et al (1994) Alginate from Pseudomonas fluorescens and P. putida: production and properties. Microbiology 140:1125–1132CrossRefGoogle Scholar
  37. Costerton JW (1995) Overview of microbial biofilms. J Ind Microbiol 15:137–140PubMedCrossRefGoogle Scholar
  38. Costerton JW (1999) Introduction to biofilm. Intern J Antimicrob Ag 11:217–221CrossRefGoogle Scholar
  39. Costerton JW, Cheng K-J, Geesey GG et al (1987) Bacterial biofilms in nature and disease. Annu Rev Microbiol 41:435–464PubMedCrossRefGoogle Scholar
  40. Costerton JW, Ellis B, Lam K et al (1994) Mechanism of electrical enhancement of effiacy of antibiotics in killing biofim bacteria. Antimicrob Ag Chemother 38:2803–2809CrossRefGoogle Scholar
  41. Costerton JW, Geesey GG, Cheng KJ (1978) How bacteria stick. Sci Amer 238:86–95PubMedCrossRefGoogle Scholar
  42. Costerton JW, Lewandowski Z, Caldwell D et al (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745PubMedCrossRefGoogle Scholar
  43. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322PubMedCrossRefGoogle Scholar
  44. Cunha MV, Sousa SA, Leitao JH et al (2004) Studies on the involvement of the exopolysaccharide produced by cystic fibrosis associated isolate of the Burkholderia cepacia complex in biofilm formation and in persistence of respiratory infection. J Clin Microbiol 42:3052–3058PubMedPubMedCentralCrossRefGoogle Scholar
  45. Cushion MT, Collins MS, Linke MJ (2009) Biofilm formation by Pneumocystis spp. Eukaryot Cell 8:197–206PubMedPubMedCentralCrossRefGoogle Scholar
  46. Daniels R, Vanderleyden J, Michiels J (2004) Quorum sensing and swarming migration in bacteria. FEMS Microbiol Rev 28:261–289PubMedCrossRefGoogle Scholar
  47. Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 2011:941810PubMedPubMedCentralGoogle Scholar
  48. Davey ME, O’Toole GA (2000) Microbial biofilm: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867PubMedPubMedCentralCrossRefGoogle Scholar
  49. Davies D (2003a) Understanding biofilm resistance to antibacterial agents. Nature Rev Drug Disc 2:114–122CrossRefGoogle Scholar
  50. Davies D (2003b) Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2:114–122PubMedCrossRefGoogle Scholar
  51. Davis ME, Chen ZG, Shin DM (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7:771–782PubMedCrossRefGoogle Scholar
  52. Davis LE, Cook G, Costerton JW (2002) Biofilm on ventriculo-peritoneal shunt tubing as a cause of treatment failure in coccidioidal meningitis. Emerg Infect Dis 8:376–379PubMedPubMedCentralCrossRefGoogle Scholar
  53. Denyer SP, Gorman SP, Sussman M (1993) Microbial biofilms: formation and control. Blackwell Scientific Publ, OxfordGoogle Scholar
  54. Depan D, Misra RDK (2014) On the determining role of network structure titania in silicone against bacterial colonization: mechanism and disruption of biofilm. Mater Sci Eng C Mater Biol Appl 34:221–228PubMedCrossRefGoogle Scholar
  55. Djeribi R, Bouchloukh W, Jouenne T et al (2012) Characterization of bacterial biofilms formed on urinary catheters. Am J Infec Control 40:854–859CrossRefGoogle Scholar
  56. Donelli G, Francolini I (2001) Efficacy of antiadhesive, antibiotic and antiseptic coatings in preventing catheter-related infections: review. J Chemother 13:595–606PubMedCrossRefGoogle Scholar
  57. Donlan R (2001a) Biofilms and device-associated infections. Emerg Infect Dis 7:277–281PubMedPubMedCentralCrossRefGoogle Scholar
  58. Donlan RM (2001b) Biofilm formation: a clinically relevant microbiological process. Clin Infect Dis 33:1387–1392PubMedCrossRefGoogle Scholar
  59. Donlan RM (2002) Biofilm microbial life on surfaces. Emerg Infect Dis 8:881–890PubMedPubMedCentralCrossRefGoogle Scholar
  60. Donlan R, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193PubMedPubMedCentralCrossRefGoogle Scholar
  61. Donnelly RF, McCarron PA, Cassidy CM et al (2007) Delivery of photosensitisers and light through mucus: investigations into the potential use of photodynamic therapy for treatment of Pseudomonas aeruginosa cystic fibrosis pulmonary infection. J Contr Rel 117:217–226CrossRefGoogle Scholar
  62. Douglas LJ (2003) Candida biofilms and their role in infection. Trends Microbiol 11:30–36PubMedCrossRefGoogle Scholar
  63. Dow JM, Crossman L, Findlay K et al (2003) Biofilm dispersal in Xanthomonas campestris is controlled by cell–cell signaling and is required for full virulence to plants. Proc Natl Acad Sci USA 100:10995–11000PubMedPubMedCentralCrossRefGoogle Scholar
  64. Dubey GP, Ben-Yehuda S (2011) Intercellular nanotubes mediate bacterial communication. Cell 144:590–600PubMedCrossRefGoogle Scholar
  65. Dunne WM (2002) Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev 15:155–166PubMedPubMedCentralCrossRefGoogle Scholar
  66. Dutta D, Cole N, Willcox M (2012) Factors influencing bacterial adhesion to contact lenses. Mol Vision 18:14–21Google Scholar
  67. Ehlers LJ, Bouwer EJ (1999) RP4 plasmid transfer among species of Pseudomonas in a biofilm reactor. Water Sci Technol 7:163–171CrossRefGoogle Scholar
  68. Ehrlich GD, Hu FZ, Shen K et al (2005) Bacterial plurality as a general mechanism driving persistence in chronic infections. Clin Orthop Rel Res 437:20–24CrossRefGoogle Scholar
  69. von Eiff C, Heilmann C, Hermann M et al (1999) Basic aspects of the pathogenesis of staphylococcal polymer associated infections. Infection 27:S7–S10CrossRefGoogle Scholar
  70. Elasri MO, Miller RV (1999) Study of the response of a biofilm bacterial community to UV radiation. Appl Environ Microbiol 65:2025–2031PubMedPubMedCentralGoogle Scholar
  71. Elving GJ, van der Mei HC, Busscher HJ et al (2002) Comparison of the microbial composition of voice prosthesis biofilms from patients requiring frequent versus infrequent replacement. Ann Otol Rhinol Laryngol 111:200–203PubMedCrossRefGoogle Scholar
  72. Espeland EM, Wetzel RG (2001) Complexation, stabilization, and UV photolysis of extracellular and surface-bound glucosidase and alkaline phosphatase: implications for biofilm microbiota. Microb Ecol 42:572–585PubMedCrossRefGoogle Scholar
  73. Estrela AB, Heck MG, Abraham WR (2009) Novel approaches to control biofilm infections. Curr Med Chem 16:1512–1530PubMedCrossRefGoogle Scholar
  74. Fanning S, Mitchell AP (2012) Fungal biofilms. PLoS Pathog 8:e1002585PubMedPubMedCentralCrossRefGoogle Scholar
  75. Fazli M, Bjarnsholt T, Kirketerp-Møller K et al (2011) Quantitative analysis of the cellular inflammatory response against biofilm bacteria in chronic wounds. Wound Rep Regen 19:387–391CrossRefGoogle Scholar
  76. Federle MJ, Bassler BL (2003) Interspecies communication in bacteria. J Clin Invest 112:1291–1299PubMedPubMedCentralCrossRefGoogle Scholar
  77. Fett WF, Osman SF, Fishman ML et al (1986) Alginate production by plant-pathogenic pseudomonads. Appl Environ Microbiol 52:466–473PubMedPubMedCentralGoogle Scholar
  78. Finkel JS, Mitchell AP (2011) Genetic control of Candida albicans biofilm development. Nat Rev Microbiol 9:109–118PubMedPubMedCentralCrossRefGoogle Scholar
  79. Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633PubMedGoogle Scholar
  80. Fleuchot B, Gitton C, Guillot A et al (2011) Rgg proteins associated with internalized small hydrophobic peptides: a new quorum-sensing mechanism in Streptococci. Mol Microbiol 80:1102–1119PubMedCrossRefGoogle Scholar
  81. Fontaine L, Boutry C, de Frahan MH et al (2010) A novel pheromone quorum-sensing system controls the development of antural competence in Streptococcus thermophilus and Streptococcus salivarius. J Bacteriol 192:1444–1454PubMedPubMedCentralCrossRefGoogle Scholar
  82. Fontana CR, Abernethy AD, Som S et al (2009) The antibacterial effect of photodynamic therapy in dental plaque-derived biofims. J Periodont Res 44:751–759PubMedPubMedCentralCrossRefGoogle Scholar
  83. Francolini I, Donelli G (2010) Prevention and control of biofilm-based medical-device-related infections. FEMS Immun Med Microbiol 59:227–238Google Scholar
  84. Fuqua C, Greenberg EP (2002) Listening in on bacteria: acyl-homoserine lactone signalling. Nat Rev Mol Cell Biol 3:685–695PubMedCrossRefGoogle Scholar
  85. Fux CA, Costerton JW, Stewart PS et al (2005) Survival strategies of infectious biofilms. Trends Microbiol 13:34–40PubMedCrossRefGoogle Scholar
  86. Garrett TR, Bhakoo M, Zhang Z (2008) Bacterial adhesion and biofilms on surfaces. Prog Nat Sci 18:1049–1056CrossRefGoogle Scholar
  87. Gelperina S, Kisich K, Iseman MD et al (2005) The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am J Respir Crit Care Med 172:1487–1490PubMedPubMedCentralCrossRefGoogle Scholar
  88. Gil-Perotin S, Ramirez P, Marti V et al (2012) Implications of endotracheal tube biofilm in ventilator-associated pneumonia response: a state of concept. Crit Care 16:R93PubMedPubMedCentralCrossRefGoogle Scholar
  89. Gilbert P, Allison DG, McBain AJ (2002) Biofilms in vitro and in vivo: do singular mechanisms imply cross-resistance? J Appl Microbiol 92:98S–110SPubMedCrossRefGoogle Scholar
  90. Gilbert P, Das J, Foley I (1997) Biofilm susceptibility to antimicrobials. Adv Dent Res 11:160–167PubMedCrossRefGoogle Scholar
  91. Gotz F (2002) Staphylococcus and biofilms. Mol Microbiol 43:1367–1378PubMedCrossRefGoogle Scholar
  92. Gualdi L, Tagliabue L, Landini P (2007) Biofilm formation-gene expression relay system in Escherichia coli: modulation of σS-dependent gene expression by the CsgD regulatory protein via σS protein stabilization. J Bacteriol 189:8034–8043PubMedPubMedCentralCrossRefGoogle Scholar
  93. Guinta AR (2010) New approaches for controlling biofilm formation. MS Thesis, University of Medicine and Dentistry of New Jersey, New JerseyGoogle Scholar
  94. Guío L, Sarriá C, de las Cuevas C et al (2009) Chronic prosthetic valve endocarditis due to Propionibacterium acnes: an unexpected cause of prosthetic valve dysfunction. Rev Esp Cardiol 62:167–177PubMedCrossRefGoogle Scholar
  95. Haghighi F, Mohammadi SR, Mohammadi P et al (2013) Antifungal activity of TiO2 nanoparticles and EDTA on Candida albicans biofilms. Infect Epidemiol Med 1:33–38CrossRefGoogle Scholar
  96. Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108PubMedCrossRefGoogle Scholar
  97. Hamblin MR, Hasan T (2004) Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem Photobiol Sci 3:436–450PubMedPubMedCentralCrossRefGoogle Scholar
  98. Harrison JJ, Ceri H, Roper NJ et al (2005b) Persister cells mediate tolerance to metal oxyanions in Escherichia coli. Microbiology 151:3181–3195PubMedCrossRefGoogle Scholar
  99. Harrison JJ, Turner RJ, Ceri H (2005a) Persister cells, the biofilm matrix and tolerance to metal cations in biofilm and planktonic Pseudomonas aeruginosa. Environ Microbiol 7:981–994PubMedCrossRefGoogle Scholar
  100. Hauser G (1885) Über Fäulnisbakterien und deren Beziehung zur Septicämie. FGW Vogel, LeipzigCrossRefGoogle Scholar
  101. Hausner M, Wuertz S (1999) High rates of conjugation in bacterial biofilms as determined by quantitative in-situ analysis. Appl Environ Microbiol 65:3710–3713PubMedPubMedCentralGoogle Scholar
  102. Hazan Z, Zumeris J, Jacob H et al (2006) Effective prevention of microbial biofilm formation on medical devices by low-energy surface acoustic waves. Antimicrob Ag Chemother 50:4144–4152CrossRefGoogle Scholar
  103. Hentzer M, Teitzel GM, Balzer GJ et al (2001) Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J Bacteriol 138:5395–5401CrossRefGoogle Scholar
  104. Hetrick EM, Schoenfisch MH (2006) Reducing implant-related infections: active release strategies. Chem Soc Rev 35:780–789PubMedCrossRefGoogle Scholar
  105. Heukelekian H, Heller A (1940) Relation between food concentration and surface for bacterial growth. J Bacteriol 40:547–558PubMedPubMedCentralGoogle Scholar
  106. Hirsch P (1984) Microcolony formation and consortia. In: Marshall KC (ed) Microbial adhesion and aggregation. Springer, Berlin, pp 373–393CrossRefGoogle Scholar
  107. Hoffman LR, D’Argenio DA, MacCoss MJ et al (2005) Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 436:1171–1175PubMedCrossRefGoogle Scholar
  108. Holm A, Vikström E (2014) Quorum sensing communication between bacteria and human cells: signals, targets, and functions. Front Plant Sci 5:309PubMedPubMedCentralCrossRefGoogle Scholar
  109. Honraet K, Goetghebeur E, Nelis HJ (2005) Comparison of three assays for the quantification of Candida biomass in suspension and CDC reactor grown biofilms. J Microbiol Methods 63:287–295PubMedCrossRefGoogle Scholar
  110. Horikoshi K, Grant WD (1998) Extremophiles: microbial life in extreme environments. Wiley-Liss, New YorkGoogle Scholar
  111. Hou S, Zhou C, Liu Z et al (2009) Antimicrobial dendrimer active against Escherichia coli biofilms. Bioorg Med Chem Lett 19:5478–5481PubMedCrossRefGoogle Scholar
  112. Van Houdt R, Michiels CW (2010) Biofilm formation and the food industry, a focus on the bacterial outer surface. J Appl Microbiol 109:1117–1131PubMedCrossRefGoogle Scholar
  113. Hoyle BD, Costerton JW (1991) Bacterial resistance to antibiotics: the role of biofilms. Prog Drug Res 37:91–105PubMedGoogle Scholar
  114. Huber B, Riedel K, Hentzer M et al (2001) The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility. Microbiology 147:2517–2528PubMedCrossRefGoogle Scholar
  115. Ichinose-Tsuno A, Aoki A, Takeuchi Y et al (2014) Antimicrobial photodynamic therapy suppresses dental plaque formation in healthy adults: a randomized controlled clinical trial. BMC Oral Health 14:152PubMedPubMedCentralCrossRefGoogle Scholar
  116. Jacqueline C, Caillon J (2014) Impact of bacterial biofilm on the treatment of prosthetic joint infections. J Antimicrob Chemother 69(Suppl 1):i37–i40PubMedCrossRefGoogle Scholar
  117. Jesline A, John NP, Narayanan PM et al (2015) Antimicrobial activity of zinc and titanium dioxide nanoparticles against biofilm-producing methicillin-resistant Staphylococcus aureus. Appl Nanosci 5:157–162CrossRefGoogle Scholar
  118. Ji C, Wang J, Liu T (2015) Aeration strategy for biofilm cultivation of the microalga Scenedesmus dimorphus. Biotechnol Lett. doi:10.1007/s10529-015-1882-5 Google Scholar
  119. Jin Y, Zhang T, Samaranayake YH et al (2005) The use of new probes and stains for improved assessment of cell viability and extracellular polymeric substances in Candida albicans biofilms. Mycopathologia 159:353–360PubMedCrossRefGoogle Scholar
  120. Jones HC, Roth IL, Saunders WM (1969) Electron microscopic study of a slime layer. J Bacteriol 99:316–325PubMedPubMedCentralGoogle Scholar
  121. Kaiser D, Losick R (1993) How and why bacteria talk to each other. Cell 73:873–885PubMedCrossRefGoogle Scholar
  122. Karatan E, Michael AJ (2013) A wider role for polyamines in biofilm formation. Biotechnol Lett 35:1715–1717PubMedCrossRefGoogle Scholar
  123. Karatan E, Watnick P (2009) Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev 73:310–347PubMedPubMedCentralCrossRefGoogle Scholar
  124. Kasimanickam RK, Ranjan A, Asokan G et al (2013) Prevention and treatment of biofilms by hybrid- and nanotechnologies. Int J Nanomed 8:2809–2819CrossRefGoogle Scholar
  125. Khan ST, Ahamed M, Musarrat J et al (2014) Anti-biofilm and antibacterial activities of zinc oxide nanoparticles against the oral opportunistic pathogens Rothia dentocariosa and Rothia mucilaginosa. Eur J Oral Sci 122:397–403PubMedCrossRefGoogle Scholar
  126. Khan S, Alam F, Azam A et al (2012) Gold nanoparticles enhance Methylene Blue-induced photodynamic therapy: a novel therapeutic approach to inhibit Candida albicans biofilm. Int J Nanomed 7:3245–3257CrossRefGoogle Scholar
  127. Khoury AE, Lam K, Ellis B et al (1992) Prevention and control of bacterial infections associated with medical devices. ASAIO J 38:M174–M178PubMedCrossRefGoogle Scholar
  128. Kim HJ, Jones MN (2004) The delivery of benzyl penicillin to Staphylococcus aureus biofilms by use of liposomes. J Lipos Res 14:123–139CrossRefGoogle Scholar
  129. Kokare CR, Chakraborty S, Khopade AN et al (2009) Biofilm: importance and applications. Ind J Biotech 8:159–168Google Scholar
  130. Korber DR, Lawrence JR, Lappin-Scott HM et al (1995) Growth of microorganisms on surfaces. In: Lappin-Scott HM, Costerton JW (eds) Microbial biofilms, plant and microbial biotechnology research series: 5. University Press, Cambridge, pp 15–45Google Scholar
  131. Kostakioti M, Hadjifrangiskou M, Hultgren SJ (2013) Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb Perspect Med 3:a010306PubMedPubMedCentralCrossRefGoogle Scholar
  132. Kreft JU (2004) Biofilm promote altruism. Arch Microbiol 150:2751–2760CrossRefGoogle Scholar
  133. Kwiecinska-Piróg J, Bogiel T, Skowron K et al (2014) Proteus mirabilis biofilm- qualitative and quantitative colorimetric methods-based evaluation. Braz J Microbiol 45:1423–1431PubMedPubMedCentralCrossRefGoogle Scholar
  134. Labbate M, Queck SY, Koh KS et al (2004) Quorum sensing-controlled biofilm development in Serratia liquefaciens MG1. J Bacteriol 186:692–698PubMedPubMedCentralCrossRefGoogle Scholar
  135. Lambadi PR, Sharma TK, Kumar P et al (2015) Facile biofunctionalization of silver nanoparticles for enhanced antibacterial properties, endotoxin removal, and biofilm control. Int J Nanomed 10:2155–2171Google Scholar
  136. LeChevallier MW, Cawthon CD, Lee RG (1988) Inactivation of biofilm bacteria. Appl Environ Microbiol 54:2492–2499PubMedPubMedCentralGoogle Scholar
  137. Levine H, Ben Jacob E (2004) Physical schemata underlying biological pattern formation-examples, issues and strategies. J Phys Biol 1:14–22CrossRefGoogle Scholar
  138. Lewis K (2005) Persister cells and the riddle of biofilm survival. Biochem (Mosc) 70:267–274CrossRefGoogle Scholar
  139. Li X, Yan Z, Xu J (2003) Quantitative variation of biofilms among strains in natural populations of Candida albicans. Microbiology 149:353–362PubMedCrossRefGoogle Scholar
  140. Lin PY, Chen HL, Huang CT et al (2010) Biofilm production, use of intravascular in-dwelling catheters and inappropriate antimicrobial therapy as predictors of fatality in Chryseobacterium meningosepticum bacteraemia. Int J Antimicrob Ag 36:436–440CrossRefGoogle Scholar
  141. Lower SK, Lamlertthon S, Casillas-Ituarte NN et al (2011) Polymorphisms in fibronectin binding protein A of Staphylococcus aureus are associated with infection of cardiovascular devices. Proc Natl Acad Sci USA 108:18372–18377PubMedPubMedCentralCrossRefGoogle Scholar
  142. Lynch MJ, Swift S, Kirke DF et al (2002) The regulation of biofilm development by quorum sensing in Aeromonas hydrophila. Environ Microbiol 4:18–28PubMedCrossRefGoogle Scholar
  143. Le Magrex-Debar E, Lemoine J, Gelle MP et al (2000) Evaluation of biohazards in dehydrated biofilms on foodstuff packaging. Int J Food Microbiol 55:239–1234PubMedCrossRefGoogle Scholar
  144. Mah T, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39PubMedCrossRefGoogle Scholar
  145. Mah T, Pitts B, Pellock B et al (2003) A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426:306–310PubMedCrossRefGoogle Scholar
  146. Makin SA, Beveridge TJ (1996) The influence of A-band and B-band lipopolysaccharide on the surface characteristics and adhesion of Pseudomonas aeruginosa to surfaces. Microbiology 142:299–307PubMedCrossRefGoogle Scholar
  147. Mariscal A, Lopez-Gigosos RM, Carnero-Varo M et al (2009) Fluorescent assay based on resazurin for detection of activity of disinfectants against bacterial biofilm. Appl Microbiol Biotechnol 82:773–783PubMedCrossRefGoogle Scholar
  148. Marlow VL, Porter M, Hobley L et al (2014) Phosphorylated DegU manipulates cell fate differentiation in the Bacillus subtilis biofilm. J Bacteriol 196:16–27PubMedPubMedCentralCrossRefGoogle Scholar
  149. Martin C, Low WL, Gupta A et al (2015) Strategies for antimicrobial drug delivery to biofilm. Curr Pharm Des 21:43–66PubMedCrossRefGoogle Scholar
  150. Martinez LR, Casadevall A (2007) Cryptococcus neoformans biofilm formation depends on surface support and carbon source and reduces fungal cell susceptibility to heat, cold, and UV light. Appl Environ Microbiol 73:4592–4601PubMedPubMedCentralCrossRefGoogle Scholar
  151. Mashburn-Warren L, Morrison DA, Federie MJ (2010) A novel double-tryptophan peptide pheromone controls competence in Streptococcus spp. via an Rgg regulator. Mol Microbiol 78:589–606PubMedPubMedCentralCrossRefGoogle Scholar
  152. May T, Ito A, Okabe S (2009) Induction of multidrug resistance mechanism in Escherichia coli biofilms by interplay between tetracycline and ampicillin resistance genes. Antimicrob Ag Chemother 53:4628–4639CrossRefGoogle Scholar
  153. McNeill K, Hamilton IR (2003) Acid tolerance response of biofilm cells of Streptococcus mutans. FEMS Microbiol Lett 221:25–30PubMedCrossRefGoogle Scholar
  154. van der Mei HC, Buijssen KJDA, van der Laan BFAM et al (2014) Voice prosthetic biofilm formation and Candida morphogenic conversions in absence and presence of different bacterial strains and species on silicone-rubber. PLoS ONE 9:e104508PubMedPubMedCentralCrossRefGoogle Scholar
  155. Melo LF, Bott TR (1997) Biofouling in water systems. J Exp Therm Fluid Sci 14:375–381CrossRefGoogle Scholar
  156. Merritt J, Qi F, Goodman SD et al (2003) Mutation of luxS affects biofilm formation in Streptococcus mutans. Infect Immun 71:1972–1979PubMedPubMedCentralCrossRefGoogle Scholar
  157. Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199PubMedCrossRefGoogle Scholar
  158. Molin S, Tolker-Nielsen T (2003) Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure. Curr Opin Biotechnol 14:255–261PubMedCrossRefGoogle Scholar
  159. Nadell CD, Xavier JB, Levin SA et al (2008) The evolution of quorum sensing in bacterial biofilms. PLoS Biol 6:171–179CrossRefGoogle Scholar
  160. Nafee N, Husari A, Maurer CK et al (2014) Antibiotic-free nanotherapeutics: ultra-small, mucus-penetrating solid lipid nanoparticles enhance the pulmonary delivery and anti-virulence efficacy of novel quorum sensing inhibitors. J Contr Rel 192:131–140CrossRefGoogle Scholar
  161. Nealson KH, Hastings JW (1979) Bacterial bioluminescence: its control and ecological significance. Microbiol Rev 43:496–518PubMedPubMedCentralGoogle Scholar
  162. Neethirajan S, Clond MA, Vogt A (2014) Medical biofilms- nanotechnology approaches. J Biomed Nanotech 10:1–22CrossRefGoogle Scholar
  163. Norris P, Noble M, Francolini I et al (2005) Ultrasonically controlled release of ciprofloxacin from self-assembled coatings on poly(2-hydroxyethyl methacrylate) hydrogels for Pseudomonas aeruginosa biofilm prevention. Antimicrob Ag Chemother 49:4272–4279CrossRefGoogle Scholar
  164. Novick RP (2003) Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol Microbiol 48:1429–1449PubMedCrossRefGoogle Scholar
  165. Ofek I, Hasty DL, Sharon N (2003) Anti-adhesion therapy of bacterial diseases: prospects and problems. FEMS Immunol Med Microbiol 38:181–191PubMedCrossRefGoogle Scholar
  166. Ophir T, Gutnick DL (1994) A role for exopolysaccharides in the protection of microorganisms from desiccation. Appl Environ Microbiol 60:740–745PubMedPubMedCentralGoogle Scholar
  167. O’Toole G, Stewart P (2005) Biofilms strike back. Nat Biotechnol 23:1378–1379PubMedCrossRefGoogle Scholar
  168. Pantanella F, Valenti P, Frioni A et al (2008) BioTimer assay, a new method for counting Staphylococcus spp. in biofilm without sample manipulation applied to evaluate antibiotic susceptibility of biofilm. J Microbiol Methods 75:478–484PubMedCrossRefGoogle Scholar
  169. Pantanella F, Valenti P, Natalizi T et al (2013) Analytical techniques to study microbial biofilm on abiotic surfaces: pros and cons of the main techniques currently in use. Ann Ig 25:31–42PubMedGoogle Scholar
  170. Peer D, Karp JM, Hong S et al (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751–760PubMedCrossRefGoogle Scholar
  171. Percival SL, Bowler PG (2004) Biofilms and their potential role in wound healing. Wounds 16:234–240Google Scholar
  172. Percival SL, Kite P (2007) Catheters and infection control. J Vasc Access 2:69–80Google Scholar
  173. Percival SL, Malic S, Cruz H et al (2011a) Introduction to biofilms. In: Percival SL (ed) Biofilms and veterinary medicine, Springer Series on Biofilms 6. Springer-Verlag, Berlin, HeidelbergGoogle Scholar
  174. Percival SL, Thomas J, Thomas D et al (2011b) Antimicrobial tolerance and role of biofilms and persister cells in wounds. Wound Rep Regen 19:1–9CrossRefGoogle Scholar
  175. Pickering SA, Bayston R, Scammell BE (2003) Electromagnetic augmentation of antibiotic effiacy in infection of orthopaedic implants. J Bone Joint Surg Br 85:588–593PubMedCrossRefGoogle Scholar
  176. Pikuta EV, Hoover RB (2007) Microbial extremophiles at the limits of life. Crit Rev Microbiol 33:183–209PubMedCrossRefGoogle Scholar
  177. del Pozo JL, Patel R (2007) The challenge of treating biofilms associated bacterial infections. Clin Pharm Therapeut 82:204–209CrossRefGoogle Scholar
  178. del Pozo JL, Rouse MS, Mandrekar JN et al (2009) Effect of electrical current on the activities of antimicrobial agents against Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis biofilms. Antimicrob Ag Chemother 53:35–40CrossRefGoogle Scholar
  179. Prakash B, Veeregowda BM, Krishnappa G (2003) A survival strategy of bacteria. J Curr Sci 85:9–10Google Scholar
  180. Pratt LA, Kolter R (1998) Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30:285–293PubMedCrossRefGoogle Scholar
  181. Prouty AM, Schwesinger WH, Gunn JS (2002) Biofilm formation and interaction with the surfaces of gallstones by Salmonella spp. Infect Immun 70:2640–2649PubMedPubMedCentralCrossRefGoogle Scholar
  182. Punithavathy PM, Nalina K, Menon T (2012) Antifungal susceptibility testing of Candida tropicalis biofilms against fluconazole using calorimetric indicator resazurin. Ind J Pathol Microbiol 55:72–74CrossRefGoogle Scholar
  183. Puskas A, Greenberg EP, Kaplan S et al (1997) A quorum-sensing system in the free-living photosynthetic bacterium Rhodobacter sphaeroides. J Bacteriol 179:7530–7537PubMedPubMedCentralGoogle Scholar
  184. Raghavendra M, Koregol A, Bhola S (2009) Photodynamic therapy: a targeted therapy in periodontics. Aust Dent J 54(Suppl 1):S102–S109PubMedCrossRefGoogle Scholar
  185. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotech Adv 27:76–83CrossRefGoogle Scholar
  186. Rajesh S, Koshi E, Philip K et al (2011) Antimicrobial photodynamic therapy: an overview. J Ind Soc Periodont 15:323–327CrossRefGoogle Scholar
  187. Ramage G, Martinez JP, Lopez-Ribot JL (2006) Candida biofilms on implanted biomaterials: a clinically significant problem. FEMS Yeast Res 6:979–986PubMedCrossRefGoogle Scholar
  188. Da Re S, Ghigo JM (2006) A CsgD independent pathway for cellulose production and biofilm formation in Esherichia coli. J Bacteriol 188:3073–3083PubMedPubMedCentralCrossRefGoogle Scholar
  189. Reading NC, Sperandio V (2006) Quorum sensing: the many languages of bacteria. FEMS Microbiol Lett 254:1–11PubMedCrossRefGoogle Scholar
  190. Rediske AM, Roeder BL, Nelson JL (2000) Pulsed ultrasound enhances the killing of Escherichia coli biofims by aminoglycoside antibiotics in vivo. Antimicrob Ag Chemother 44:771–772CrossRefGoogle Scholar
  191. Renner LD, Weibel DB (2011) Physicochemical regulation of biofilm formation. MRS Bull 36:347–355PubMedPubMedCentralCrossRefGoogle Scholar
  192. Reymond JL, Bergmann M, Darbre T (2013) Glycopeptide dendrimers as Pseudomonas aeruginosa biofilm inhibitors. Chem Soc Rev 42:4814–4822PubMedCrossRefGoogle Scholar
  193. Rhoads DD, Wolcott RW, Cutting KF et al (2007) Evidence of biofilms in wounds and potential ramifications. In: Gilbert P, Allison D, Brading M et al (eds) Biofilms: coming of age, Vol 8. The biofilm club, pp 131–143Google Scholar
  194. Roberts AP, Pratten J, Wilson M et al (1999) Transfer of a conjugative transposon, Tn5397 in a model oral biofilm. FEMS Microbiol Lett 177:63–66PubMedCrossRefGoogle Scholar
  195. Roberts ME, Stewart PS (2005) Modelling protection from antimicrobial agents in biofilms through the formation of persister cells. Microbiology 151:75–80PubMedCrossRefGoogle Scholar
  196. Sakamoto A, Terui Y, Yamamoto T et al (2012) Enhanced biofilm formation and/or cell viability by polyamines through stimulation of response regulators UvrY and CpxR in the two-component signal transducing systems, and ribosome recycling factor. Int J Biochem Cell Biol 44:1877–1886PubMedCrossRefGoogle Scholar
  197. Salem W, Leitner DR, Zingl FG et al (2015) Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli. Intern J Med Microbiol 305:85–95CrossRefGoogle Scholar
  198. Sandberg ME, Schellmann D, Brunhofer G et al (2009) Pros and cons of using resazurin staining for quantification of viable Staphylococcus aureus biofilms in a screening assay. J Microbiol Meth 78:104–106CrossRefGoogle Scholar
  199. Sanhai WR, Sakamoto JH, Canady R et al (2008) Seven challenges for nanomedicine. Nat Nanotechnol 3:242–244PubMedCrossRefGoogle Scholar
  200. Santos AP, Watanabe E, Andrade Dd (2011) Biofilm on artificial pacemaker: fiction or reality? Arq Bras Cardiol 97:e113–e120PubMedCrossRefGoogle Scholar
  201. Sathyanarayanan MB, Balachandranath R, Srinivasulu YG et al (2013) The effect of gold and iron-oxide nanoparticles on biofilm-forming pathogens. ISRN Microbiology 2013:272086PubMedPubMedCentralCrossRefGoogle Scholar
  202. Sauer K (2003) The genomics and proteomics of biofilm formation. Genome Biol 4:219PubMedPubMedCentralCrossRefGoogle Scholar
  203. Sauer K, Cullen MC, Rickard AH et al (2004) Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm. J Bacteriol 186:7312–7326PubMedPubMedCentralCrossRefGoogle Scholar
  204. Schauder S, Bassler BL (2001) The languages of bacteria. Genes Dev 15:1468–1480PubMedCrossRefGoogle Scholar
  205. Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280PubMedPubMedCentralGoogle Scholar
  206. Schuckert KH, Jopp S, Müller U (2006) De novo grown bone on exposed implant surfaces using photodynamic therapy and recombinant human bone morphogenetic protein-2: case report. Implant Dent 15:361–365PubMedCrossRefGoogle Scholar
  207. Scwingel AR, Barcessat AR, Núñez SC et al (2012) Antimicrobial photodynamic therapy in the treatment of oral candidiasis in HIV-infected patients. Photomed Laser Surg 30:429–432PubMedCrossRefGoogle Scholar
  208. Seneviratne G (2003) Development of eco-friendly, beneficial microbial biofilms. Curr Sci 85:1395–1396Google Scholar
  209. Seneviratne G, Zavahir JS, Bandara WMMS et al (2008) Fungal-bacterial biofilms: their development for novel biotechnological applications. World J Microbiol Biotechnol 24:739–743CrossRefGoogle Scholar
  210. Shapiro JA, Dworkin M (1997) Bacteria as multicellular organsims. Oxford University Press Inc, New YorkGoogle Scholar
  211. Simões M, Carvalho H, Pereira MO et al (2003) Studies on the behavior of Pseudomonas fluorescens biofilms after ortho-phthalaldehyde treatment. Biofoul 3:151–157CrossRefGoogle Scholar
  212. Simões M, Simões LC, Vieira MJ (2010) A review of current and emergent biofilm control strategies. LWT Food Sci Tech 43:573–583CrossRefGoogle Scholar
  213. Singhai M, Malik A, Shahid M et al (2012) Colonization of peripheral intravascular catheters with biofilm producing microbes: evaluation of risk factors. Niger Med J 53:37–41PubMedPubMedCentralCrossRefGoogle Scholar
  214. Skogman ME, Vuorela PM, Fallarero A (2012) Combining biofilm matrix measurements with biomass and viability assays in susceptibility assessments of antimicrobials against Staphylococcus aureus biofilms. J Antibiot (Tokyo) 65:453–459CrossRefGoogle Scholar
  215. Slater H, Alvarez-Morales A, Barber CE et al (2000) A two-component system involving an HD-GYP domain protein links cell-cell signaling to pathogenicity gene expression in Xanthomonas campestris. Mol Microbiol 38:986–1003PubMedCrossRefGoogle Scholar
  216. Smadhi M, de Bentzmann S, Imberty A et al (2014) Expeditive synthesis of trithiotriazine-cored glycoclusters and inhibition of Pseudomonas aeruginosa biofilm formation. Beilstein J Org Chem 10:1981–1990PubMedPubMedCentralCrossRefGoogle Scholar
  217. Smirnova TA, Didenko LV, Azizbekyan RR et al (2010) Structural and functional characteristics of bacterial biofilms. Microbiology 79:413–423CrossRefGoogle Scholar
  218. Smith WA (2005) Biofilms and antibiotic therapy: is there a role for combating bacterial resistance by the use of novel drug delivery system? Adv Drug Delivery Rev 57:1539–1550CrossRefGoogle Scholar
  219. Song Z, Borgwardt L, Høiby N et al (2013) Prosthesis infections after orthopedic joint replacement: the possible role of bacterial biofilms. Orthopedic Rev 5:e14CrossRefGoogle Scholar
  220. Soukos NS, Chen PS, Morris JT et al (2006) Photodynamic therapy for endodontic disinfection. J Endod 32:979–984PubMedCrossRefGoogle Scholar
  221. Srivastava S, Bhargava A (2014) Microbial biofilms: from nature to human body. In: Shukla DS, Pandey DK (eds) Current trend in life science. JBC Press, New Delhi, pp 1–16Google Scholar
  222. Srivastava S, Pathak N, Bhargava A et al (2011b) Nanotechnology for cancer diagnosis and therapy. IMTU Medical J 2:19–30Google Scholar
  223. Srivastava S, Pathak N, Bhargava A et al (2014) Nanotechnology: the science of the future. In: Shukla DS, Pandey DK (eds) Current trend in life science. JBC Press, New Delhi, pp 182–195Google Scholar
  224. Srivastava S, Pathak N, Srivastava P (2011a) Identification of limiting factors for the optimum growth of Fusarium oxysporum in liquid media. Toxicol Intern 18:111–116CrossRefGoogle Scholar
  225. Stewart PS (2002) Mechanisms of antibiotic resistance in bacterial biofilms. Int J Med Microbiol 292:107–113PubMedCrossRefGoogle Scholar
  226. Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138PubMedCrossRefGoogle Scholar
  227. Stewart PS, Wattanakaroon W, Goodrum L et al (1999) Electrolytic generation of oxygen partially explains electrical enhancement of tobramycin efficacy against Pseudomonas aeruginosa biofim. Antimicrob Ag Chemother 43:292–296Google Scholar
  228. Stickler DJ (2014) Clinical complications of urinary catheters caused by crystalline biofilms: something needs to be done. J Intern Med 276:120–129PubMedCrossRefGoogle Scholar
  229. Stoodley P, Boyle JD, Dodds I et al (1998) Influence of hydrodynamics and nutrients on biofilm structure. J Appl Microbiol 85:19S–28SPubMedCrossRefGoogle Scholar
  230. Stoodley P, Debeer D, Lewandowski Z (1994) Liquid flow in biofilm systems. Appl Environ Microbiol 60:2711–2716PubMedPubMedCentralGoogle Scholar
  231. Stoodley P, Sauer K, Davies DG et al (2002) Biofilms as complex differentiated communities. Annu Rev Microbiol 56:187–209PubMedCrossRefGoogle Scholar
  232. Sun LM, Zhang CL, Li P (2012) Characterization, antibiofilm, and mechanism of action of novel PEG-stabilized lipid nanoparticles loaded with terpinen-4-ol. J Agric Food Chem 60:6150–6156PubMedCrossRefGoogle Scholar
  233. Sutherland IW (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiol 147:3–9CrossRefGoogle Scholar
  234. Szczotka-Flynn LB, Imamura Y, Chandra J et al (2009) Increased resistance of contact lens related bacterial biofilms to antimicrobial activity of soft contact lens care solutions. Cornea 28:918–926PubMedPubMedCentralCrossRefGoogle Scholar
  235. Taga ME, Bassler BL (2003) Chemical communication among bacteria. Proc Natl Acad Sci USA 100:14549–14554PubMedPubMedCentralCrossRefGoogle Scholar
  236. Tanaka M, Mroz P, Dai T et al (2012) Photodynamic therapy can induce a protective innate immune response against murine bacterial arthritis via neutrophil accumulation. PLoS ONE 7:e39823PubMedPubMedCentralCrossRefGoogle Scholar
  237. Tawakoli PN, Al-Ahmad A, Hoth-Hannig W et al (2013) Comparison of different live/dead stainings for detection and quantification of adherent microorganisms in the initial oral biofilm. Clin Oral Investig 17:841–850PubMedCrossRefGoogle Scholar
  238. Teitzel GM, Parsek MR (2003) Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl Environ Microbiol 69:2313–2320PubMedPubMedCentralCrossRefGoogle Scholar
  239. Thurnheer T, Gmür R, Guggenheim B (2004) Multiplex FISH analysis of a six-species bacterial biofilm. J Microbiol Methods 56:37–47PubMedCrossRefGoogle Scholar
  240. Trizna EY, Khakimullina EN, Latypova LZ et al (2015) Thio derivatives of 2(5H)-furanone as inhibitors against Bacillus subtilis biofilms. Acta Naturae 7:102–107PubMedPubMedCentralGoogle Scholar
  241. Tsuneda S, Aikawa H, Hayashi H et al (2003) Extracellular polymeric substances responsible for bacterial adhesion onto solid surface. FEMS Microbiol Lett 223:287–292PubMedCrossRefGoogle Scholar
  242. Uroz S, Oger P, Lepleux C et al (2011) Bacterial weathering and its contribution to nutrient cycling in temperate forest ecosystems. Res Microbiol 162:820–831PubMedCrossRefGoogle Scholar
  243. Valle J, Da Re S, Henry N et al (2006) Broad-spectrum biofilm inhibition by a secreted bacterial polysaccharide. Ptoc Nat Acad Sci USA 103:12558–12563CrossRefGoogle Scholar
  244. Vandecandelaere I, Matthijs N, Van Nieuwerburgh F et al (2012) Assessment of microbial diversity in biofilms recovered from endotracheal tubes using culture dependent and independent approaches. PLoS ONE 7:e38401PubMedPubMedCentralCrossRefGoogle Scholar
  245. Vu B, Chen M, Crawford RJ et al (2009) Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14:2535–2554PubMedCrossRefGoogle Scholar
  246. Wainwright M, Crossley KB (2004) Photosensitising agents-circumventing resistance and breaking down biofims: a review. Intern Biodeter Biodegrad 53:119–126CrossRefGoogle Scholar
  247. Walters MC III, Roe F, Bugnicourt A et al (2003) Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Ag Chemother 47:317–323CrossRefGoogle Scholar
  248. Wang A, Athan E, Pappas PA et al (2007) Contemporary clinical profile and outcome of prosthetic valve endocarditis. J Am Med Assn 297:1354–1361CrossRefGoogle Scholar
  249. Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Ann Rev Cell Dev Biol 21:319–346CrossRefGoogle Scholar
  250. Wen ZT, Burne RA (2004) LuxS-mediated signaling in Streptococcus mutans is involved in regulation of acid and oxidative stress tolerance and biofilm formation. J Bacteriol 186:2682–2691PubMedPubMedCentralCrossRefGoogle Scholar
  251. Wingender J, Neu TR, Flemming HC (1999) What are bacterial extracellular polymeric substances? In: Wingender J, Neu TR, Flemming HC (eds) Microbial extracellular polymeric substances– characterization, structure and function. Springer-Verlag, Berlin Heidelberg, pp 1–19CrossRefGoogle Scholar
  252. Wolfaardt GM, Lawrence JR, Robarts RD et al (1998) In situ characterization of biofilm exopolymers involved in the accumulation of chlorinated organics. Microb Ecol 35:213–223PubMedCrossRefGoogle Scholar
  253. Woo GL, Yang ML, Yin HQ et al (2002) Biological characterization of a novel biodegradable antimicrobial polymer synthesized with floroquinolones. J Biomed Mater Res 59:35–45PubMedCrossRefGoogle Scholar
  254. Zhang L, Gu FX, Chan JM et al (2008) Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 83:761–769PubMedCrossRefGoogle Scholar
  255. Zhang L, Jiang Y, Ding Y et al (2007) Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanoflids). J Nanoparticle Res 9:479–489CrossRefGoogle Scholar
  256. Zhang L, Pornpattananangkul D, Hu CMJ et al (2010) Development of nanoparticles for antimicrobial drug delivery. Curr Med Chem 17:585–594PubMedCrossRefGoogle Scholar
  257. Zhu CT, Xu YQ, Shi J et al (2010) Liposome combined porous beta-TCP scaffold: preparation, characterization, and anti-biofilm activity. Drug Deliv 17:391–398PubMedCrossRefGoogle Scholar
  258. Zobell CE (1943) The effect of solid surfaces on bacterial activity. J Bacteriol 46:39–56PubMedPubMedCentralGoogle Scholar
  259. Zogaj X, Nimtz M, Ronde M et al (2001) The multicellular morphotipes of Salmonella typhimurium and E. coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol 39:1452–1463PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Amity Institute of BiotechnologyAmity University Uttar Pradesh (Lucknow Campus)LucknowIndia

Personalised recommendations