Biotechnology Letters

, Volume 37, Issue 11, pp 2201–2211 | Cite as

Isolation and characterization of an interactive culture of two Paenibacillus species with moderately thermophilic desulfurization ability

  • Jia Wang
  • Batzaya Davaadelger
  • Joelle K. Salazar
  • Robert R. ButlerIII
  • Jean-François Pombert
  • John J. Kilbane
  • Benjamin C. StarkEmail author
Original Research Paper



To isolate and characterize novel thermophilic bacteria capable of biodesulfurization of petroleum.


A culture containing two Paenibacillus spp. (denoted “32O-W” and “32O-Y”) was isolated by repeated passage of a soil sample at up to 55 °C in medium containing dibenzothiophene (DBT) as sulfur source. Only 32O-Y metabolized DBT, apparently via the 4S pathway; maximum activity occurred from 40 to 45 °C, with some activity up to at least 50 °C. 32O-W enhanced DBT metabolism by 32O-Y (by 22–74 % at 40–50 °C). With sulfate as sulfur source, 32O-Y and 32O-W grew well up to 58 and 63 °C, respectively. Selection of a mixed culture of 32O-Y and 32O-W at 54 °C increased DBT metabolism 36–42 % from 40 to 45 °C. Genome sequencing identified desulfurization gene homologs in the strains consistent with their desulfurization properties.


The 32O-Y/32O-W culture may be a useful starting point for development of an improved thermophilic petroleum biodesulfurization process.


Biodesulfurization Dibenzothiophene Directed evolution Interaction Paenibacillus Thermophiles 



This work was supported by a Grant (No. 6600019855) from the Saudi Arabian Oil Company (Saudi Aramco).

Supporting information

Supplementary Fig. 1—Data for the identification of strain 32-Y as Paenibacillus naphthalenovorans and strain 320-W as Paenibacillus sp.

Supplementary material

10529_2015_1918_MOESM1_ESM.doc (38 kb)
Supplementary material 1 (DOC 38 kb)
10529_2015_1918_MOESM2_ESM.eps (1.4 mb)
Supplementary material 2 (EPS 1412 kb)


  1. Alves L, Melo M, Mendonca D, Simoes F, Matos J, Tenreiro R, Girio FM (2007) Sequencing, cloning and expression of the dsz genes required for dibenzothiophene sulfone desulfurization from Gordonia alkalinivorans strain 1B. Enzyme Microbial Technol 40:1598–1603CrossRefGoogle Scholar
  2. Bhatia S, Sharma D (2010) Biodesulfurization of dibenzothiophene, its alkylated derivatives and crude oil by a newly isolated strain Pantoea agglomerans D23W3. Biochem Eng J 50:104–109CrossRefGoogle Scholar
  3. Denome SA, Oldfield C, Nash LJ, Young KD (1994) Characterization of the desulfurization genes from Rhodococcus sp. strain IGTS8. J Bacteriol 176:6707–6716PubMedCentralPubMedGoogle Scholar
  4. Eddy SR (2011) Accelerated profile HMM searches. PLoS Comput Biol 7:e1002195PubMedCentralCrossRefPubMedGoogle Scholar
  5. Furuya T, Kirimura K, Kino K, Usami S (2001) Thermophilic biodesulfurization of dibenzothiophene and its derivatives by Mycobacterium phlei WU-F1. FEMS Microbiol Lett 204:129–133CrossRefPubMedGoogle Scholar
  6. Ishii Y, Konishi J, Okada H, Hirasawa K, Onaka T, Suzuki M (2000) Operon structure and functional analysis of the genes encoding thermophilic desulfurizing enzymes of Paenibacillus sp. A11-2. Biochem Biophys Res Commun 270:81–88CrossRefPubMedGoogle Scholar
  7. Izumi Y, Ohshiro T, Ogino H, Hine Y, Shimao M (1994) Selective desulfurization of dibenzothiophene by Rhodococcus erythropolis D-1. Appl Environ Microbiol 60:223–226PubMedCentralPubMedGoogle Scholar
  8. Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn AF, Sangrador-Vegas A, Scheremetjew M, Yong SY, Lopez R, Hunter S (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30:1236–1240PubMedCentralCrossRefPubMedGoogle Scholar
  9. Kayser KJ, Bielaga-Jones BA, Jackowski K, Odusan O, Kilbane JJ (1993) Utilization of organosulfur compounds by axenic and mixed cell cultures of Rhodococcus rhodochrous IGTS8. J Gen Microbiol 139:3123–3129CrossRefGoogle Scholar
  10. Kayser KJ, Cleveland L, Park HS, Kwak JH, Kolhatkar A, Kilbane JJ (2002) Isolation and characterization of a moderate thermophile, Mycobacterium phlei GTIS10, capable of dibenzothiophene desulfurization. Appl Microbiol Biotechnol 59:737–746CrossRefPubMedGoogle Scholar
  11. Kilbane JJ (2006) Microbial biocatalyst developments to upgrade fossil fuels. Curr Opin Biotechnol 17:305–314CrossRefPubMedGoogle Scholar
  12. Kilbane JJ, Robbins J (2007) Characterization of the dszABC genes of Gordonia amicalis F.5.25.8 and identification of conserved protein and DNA sequences. Appl Microbiol Biotechnol 75:843–851CrossRefPubMedGoogle Scholar
  13. Kirimura K, Furuya T, Nishii Y, Ishii Y, Kino K, Usami S (2001) Biodesulfurization of dibenzothiophene and its derivatives through the selective cleavage of carbon-sulfur bonds by a moderately thermophilic bacterium Bacillus subtilis WU-S2B. J Biosci Bioeng 91:262–266CrossRefPubMedGoogle Scholar
  14. Kirimura K, Harada K, Iwasawa H, Tanaka T, Iwasaki Y, Furuya T, Ishii Y, Kino K (2004) Identification and functional analysis of the genes encoding dibenzothiophene-desulfurizing enzymes from thermophilic bacteria. Appl Microbiol Biotechnol 65:703–713CrossRefPubMedGoogle Scholar
  15. Konishi J, Ishii Y, Onaka T, Okumura K, Suzuki M (1997) Thermophilic carbon-sulfur-bond-targeted biodesulfurization. Appl Environ Microbiol 63:3164–3169PubMedCentralPubMedGoogle Scholar
  16. Li FL, Xu P, Ma CQ, Luo LL, Wang XS (2003) Deep desulfurization of hydrodesulfurization-treated diesel oil by a facultative thermophilic bacterium Mycobacterium sp. X7B. FEMS Microbiol Lett 223:301–307CrossRefPubMedGoogle Scholar
  17. Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, He J, Gwadz M, Hurwitz DI, Lanczycki CJ, Lu F, Marchler GH, Song JS, Thanki N, Wang Z, Yamashita RA, Zhang D, Zheng C, Bryant SH (2015) CDD: NCBI’s conserved domain database. Nucl Acids Res 43:D222–D226PubMedCentralCrossRefPubMedGoogle Scholar
  18. McFarland BL, Boron DJ, Deever W, Meyer JA, Johnson AR, Atlas RM (1998) Biocatalytic sulfur removal from fuels: applicability for producing low sulfur gasoline. Crit Rev Microbiol 24:99–147CrossRefPubMedGoogle Scholar
  19. Mitchell A, Chang HY, Daugherty L, Fraser M, Hunter S, Lopez R et al (2015) The InterPro protein families database: the classification resource after 15 years. Nucl Acids Res 43:D213–D221PubMedCentralCrossRefPubMedGoogle Scholar
  20. Mohebali G, Ball AS, Rasekh B, Kaytash A (2007) Biodesulfurization potential of a newly isolated bacterium, Gordonia alkanivorans RIPI90A. Enzyme Microb Technol 40:578–584CrossRefGoogle Scholar
  21. Ohshiro T, Hirata T, Izumi Y (1996) Desulfurization of dibenzothiophene derivatives by whole cells of Rhodococcus erythropolis H-2. FEMS Microbiol Lett 142:65–70CrossRefGoogle Scholar
  22. Omori T, Monna L, Saiki Y, Kodama T (1992) Desulfurization of dibenzothiophene by Corynebacterium sp. strain SY1. Appl Environ Microbiol 58:911–915PubMedCentralPubMedGoogle Scholar
  23. Pan J, Wu F, Wang J, Xu L, Khayyat NH, Stark BC, Kilbane JJ (2013) Enhancement of desulfurization activity by enzymes of the Rhodococcus dsz operon through coexpression of a high sulfur peptide and directed evolution. Fuel 112:385–390CrossRefGoogle Scholar
  24. Song C (2002) New approaches to deep desulfurization for ultra-clean gasoline and diesel fuels: an overview. Prepr Paper Am Chem Soc Div Fuel Chem 47:438–444Google Scholar
  25. Yu B, Ma C, Zhou W, Wang Y, Cai X, Tao F, Zhang Q, Tong M, Qu J, Ping X (2006) Microbial desulfurization of gasoline by free whole-cells of Rhodococcus erythropolis XP. FEMS Microbiol Lett 258:284–289CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Jia Wang
    • 1
  • Batzaya Davaadelger
    • 1
  • Joelle K. Salazar
    • 1
  • Robert R. ButlerIII
    • 1
  • Jean-François Pombert
    • 1
  • John J. Kilbane
    • 1
  • Benjamin C. Stark
    • 1
    Email author
  1. 1.Department of BiologyIllinois Institute of TechnologyChicagoUSA

Personalised recommendations