Skip to main content

Advertisement

Log in

Fungi as an efficient mycosystem for the synthesis of metal nanoparticles: progress and key aspects of research

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Nanotechnology is an emerging cutting-edge technology, which involves interdisciplinary subjects, such as physics, chemistry, biology, material science and medicine. Different methods for the synthesis of nanoparticles have been discussed here. Although physical and chemical methods have been successfully used to synthesize nanoparticles, the use of hazardous chemicals and synthesis at high temperature is a matter of concern. Hence, there is a necessity to develop eco-friendly techniques for the synthesis of nanoparticles. Biosynthesis of nanoparticles by fungi, bacteria, actinomycetes, lichen and viruses have been reported eco-friendly. Moreover, the fungal system has emerged as an efficient system for nanoparticle synthesis as fungi possess distinctive characters including high wall binding capacity, easy to culture and simpler biomass handling, etc. In this review, we have discussed fungi as an important tool for the fabrication of nanoparticles. In addition, methods and mechanism for synthesis of nanoparticles and its potential applications have also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdeen S, Geo S, Sukanya PPK et al (2014) Biosynthesis of silver nanoparticles from Actinomycetes for therapeutic applications. Int J Nano Dimens 5:155–162

    Google Scholar 

  • Adil SF, Assal ME, Khan M (2015) Biogenic synthesis of metallic nanoparticles and prospects toward green chemistry. Dalton Trans 44:9709–9717

    Article  CAS  PubMed  Google Scholar 

  • Ahmad A, Mukherjee P, Mandal D et al (2002) Enzyme mediated extracellular biosynthesis of CdS nanoparticles by the fungus Fusarium oxysporum. J Amer Chem Soc 124:12108–12109

    Article  CAS  Google Scholar 

  • Ahmad A, Senapati S, Khan MI et al (2003) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 14:824–828

    Article  CAS  Google Scholar 

  • Ahmad A, Senapati S, Khan MI et al (2005) Extra-/intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus Trichothecium sp. J Biomed Nanotechnol 1:47–53

    Article  CAS  Google Scholar 

  • Ahmed S, Ahmad M, Swami BL, Ikram S (2015) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res. doi:10.1016/j.jare.2015.02.007

    Google Scholar 

  • Ahn S, Lee IH, Kang S et al (2014) Gold nanoparticles displaying tumor-associated self-antigens as a potential vaccine for cancer immunotherapy. Adv Healthcare Mater 3:1194–1199

    Article  CAS  Google Scholar 

  • Alani F, Moo-Young M, Anderson W (2012) Biosynthesis of silver nanoparticles by a new strain of Streptomyces sp. compared with Aspergillus fumigatus. World J Microbiol Biotechnol 28:1081–1086

    Article  CAS  PubMed  Google Scholar 

  • Ali MKR, Panikkanvalappil SR, El-Sayed MA (2014) Enhancing the efficiency of gold nanoparticles treatment of cancer by increasing their rate of endocytosis and cell accumulation using rifampicin. J Am Chem Soc 136:4464–4467

    Article  CAS  PubMed  Google Scholar 

  • Alkilany AM, Yaseen AIB, Kailani MH (2015) Synthesis of monodispersed gold nanoparticles with exceptional colloidal stability with grafted polyethylene glycol-g-polyvinyl alcohol. J Nanomater. doi:10.1155/2015/712359

    Google Scholar 

  • Allahverdiyev AM, Kon KV, Abamor ES et al (2011) Copping with antibiotic resistance: combination of nanoparticles with antibiotics and other antimicrobial agents. Expert Rev Anti-Infect Ther 9:1035–1052

    Article  CAS  PubMed  Google Scholar 

  • Alzahrani E, Sharfalddin A, Alamodi M (2015) Microwave-hydrothermal synthesis of ferric oxide doped with cobalt. Adv Nanopart 4:53–60

    Article  Google Scholar 

  • Arjunan NK, Murugan K, Rejeeth C et al (2012) Green synthesis of silver nanoparticles for the control of mosquito vectors of malaria, filariasis and dengue. Vector Borne Zoonotic Dis 12:262–268

    Article  PubMed  Google Scholar 

  • Arnaiz B, Martinez-Avila O, Falcon-Perez JM, Penades S (2012) Cellular uptake of gold nanoparticles bearing HIV gp120 oligomannosides. Bioconjugate Chem 23:814–825

    Article  CAS  Google Scholar 

  • Ashiq MGB, Saeed MA, Tahir BA et al (2013) Breast cancer therapy by laser-induced Coulomb explosion of gold nanoparticles. Chin J Cancer Res 25:756–761

    PubMed Central  PubMed  Google Scholar 

  • Balagurunathan R, Radhakrishnan M, Babu RR, Velmurugan D (2011) Biosynthesis of gold nanoparticles by actinomycete Streptomyces viridogens strain HM10. Indian J Biochem Biophys 48:331–335

    CAS  PubMed  Google Scholar 

  • Banerjee P, Satapathy M, Mukhopahayay A, Das P (2014) Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis. Biores Bioproc 1:3

    Article  Google Scholar 

  • Bansal V, Rautray D, Ahmad A, Sastry M (2004) Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J Mater Chem 14:3303–3305

    Article  CAS  Google Scholar 

  • Bansal V, Rautray D, Bharde A et al (2005) Fungus mediated biosynthesis of silica and titania particles. J Mater Chem 15:2583–2589

    Article  CAS  Google Scholar 

  • Barik TK, Sahu B, Swain V (2008) Nano-silica from medicine to pest control. Parasitol Res 103:253–258

    Article  CAS  PubMed  Google Scholar 

  • Basavaraja S, Balaji SD, Lagashetty A et al (2007) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater Res Bull 43:1164–1170

    Article  CAS  Google Scholar 

  • Berry CC, de la Fuente JM, Mullin M et al (2007) Nuclear localization of HIV-1 Tat functionalized gold nanoparticles. IEEE Trans Nanobiosci 6:262–269

    Article  CAS  Google Scholar 

  • Beyth N, Houri-Haddad Y, Domb A, Khan W, Hazan R (2015) Alternative antimicrobial approach: Nano-antimicrobial materials. J Evid Based Complementary Altern Med. doi:10.1155/2015/246012

    Google Scholar 

  • Bhainsa KC, D’Souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B 47:160–164

    Article  CAS  Google Scholar 

  • Bharde A, Rautray D, Bansal V et al (2006) Extracellular biosynthesis of magnetite using fungi. Small 2:135–141

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya R, Mukherjee P (2008) Biological properties of naked nanoparticles. Adv Drug Del Rev 60:1289–1306

    Article  CAS  Google Scholar 

  • Bhau BS, Ghosh S, Puri S et al (2015) Green synthesis of gold nanoparticles from the leaf extract of Nepenthes khasiana and antimicrobial assay. Adv Mater Lett 6:55–58

    CAS  Google Scholar 

  • Birla SS, Tiwari VV, Gade AK et al (2009) Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherchia coli Pseudomonas aeruginosa and Staphylococcus aureus. Lett App Microbiol 48:173–179

    Article  CAS  Google Scholar 

  • Bowman SM, Free JF (2011) The structure and synthesis of the fungal cell-wall. BioEssays 28:799–808

    Article  Google Scholar 

  • Bowman MC, Ballard TE, Ackerson CJ et al (2008) Inhibition of HIV fusion with multivalent gold nanoparticles. J Am Chem Soc 130:6896–6897

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brown AN, Smith K, Samuels TA et al (2012) Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus. App Environ Microbiol 78:2768–2774

    Article  CAS  Google Scholar 

  • Cabeza L, Ortiz R, Arias JL et al (2015) Enhanced antitumor activity of doxorubicin in breast cancer through the use of poly(butylcyanoacrylate) nanoparticles. Int J Nanomed 10:1291–1306

    CAS  Google Scholar 

  • Cao-Milan R, Liz-Marzan LM (2014) Gold nanoparticle conjugates: recent advances toward clinical applications. Expert Opin Drug Deliv 11:741–752

    Article  CAS  PubMed  Google Scholar 

  • Castro-Longoria E, Vilchis-Nestor AR, Avalos-Borja M (2011) Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surf B 83:42–48

    Article  CAS  Google Scholar 

  • Chan YS, Mashitah MD (2012) Instantaneous biosynthesis of silver nanoparticles by selected macro-fungi. Aust J Basic App Sci 6:222–226

    CAS  Google Scholar 

  • Chaudhari PR, Masurkar SA, Shidore VB, Kamble SP (2012) Effect of biosynthesized silver nanoparticles on Staphylococcus aureus biofilm quenching and prevention of biofilmformation. Int J Pharma Bio Sci 3:222–229

    CAS  Google Scholar 

  • Chen JC, Lin ZH, Ma XX (2003) Evidence of the production of silver nanoparticles via pretreatment of Phoma sp. 32883 with silver nitrate. Lett App Microbiol 37:105–108

    Article  CAS  Google Scholar 

  • Chen N, Zheng Y, Yin J et al (2013) Inhibitory effects of silver nanoparticles against adenovirus type 3 in vitro. J Virol Meth 193:470–477

    Article  CAS  Google Scholar 

  • Chen G, Yi B, Zeng G et al (2014) Facile green extracellular biosynthesis of CdS quantum dots by white rot fungus Phanerochaete chrysosporium. Colloids Surf B 117:199–205

    Article  CAS  Google Scholar 

  • Chinnamuthu CR, Boopathi PM (2009) Nanotechnology and agroecosystem. Madras Agric J 96:17–31

    Google Scholar 

  • Chiodo F, Marradi M, Calvo J et al (2014) Glycosystems in nanotechnology: gold glyconanoparticles as carrier for anti-HIV prodrugs. Beilstein J Org Chem 10:1339–1346

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chong MN, Jin B, Chow CWK, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027

    Article  CAS  PubMed  Google Scholar 

  • Corradini E, de-Moura MR, Mattoso LHC (2010) A preliminary study of the incorporation of NPK fertilizer into chitosan nanoparticles. Poly Lett 4:509–515

    Article  CAS  Google Scholar 

  • Correa-Llanten DN, Muñoz-Ibacache SA, Castro ME et al (2013) Gold nanoparticles synthesized by Geobacillus sp. strain ID17 a thermophilic bacterium isolated from Deception Island, Antarctica. Microb Cell Fact 12:75

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Costa P, Amaro A, Botelho A et al (2010) Gold nanoprobe assay for the identification of mycobacteria of the Mycobacterium tuberculosis complex. Clin Microbiol Infect 16:1464–1469

    Article  CAS  PubMed  Google Scholar 

  • Daenen LG, Houthuijzen JM, Cirkel GA et al (2014) Treatment-induced host-mediated mechanisms reducing the efficacy of antitumor therapies. Oncogene 33:1341–1347

    Article  CAS  PubMed  Google Scholar 

  • Dameron CT, Reese RN, Mehra RK et al (1989) Biosynthesis of cadmium sulfide quantum semiconductor cryastallits. Nature 338:596–597

    Article  CAS  Google Scholar 

  • Dar MA, Ingle AP, Rai MK (2013) Enhanced antimicrobial activity of silver nanoparticles synthesized by Cryphonectria sp.: evaluated singly and in combination with antibiotics. J Nanomed 9:105–110

    CAS  Google Scholar 

  • Das SK, Das AR, Guha AK (2009) Gold nanoparticles: microbial synthesis and application in water hygiene management. Langmuir 25:8192–8199

    Article  CAS  PubMed  Google Scholar 

  • Das VL, Thomas R, Varghese RT et al (2014) Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area. 3 Biotech 4:121–126

    Article  PubMed Central  Google Scholar 

  • Dasgupta N, Ranjan S, Mundekkad D et al (2015) Nanotechnology in agro-food: from field to plate. Food Res Int 69:381–400

    Article  Google Scholar 

  • Devi LS, Joshi SR (2012) Antimicrobial and synergistic effects of silver nanoparticles synthesized using soil fungi of high altitudes of eastern himalaya. Mycobiology 40:27–34

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Devi LS, Joshi SR (2015) Ultrastructures of silver nanoparticles biosynthesized using endophytic fungi. J Microsco Ultrastruc 3:29–37

    Article  Google Scholar 

  • Dhanasekar NN, Rahul G, Narayanan KB et al (2015) Green chemistry approach for the synthesis of gold nanoparticles using the fungus Alternaria sp. J Microbiol Biotechnol. doi:10.4014/jmb.1410.10036

    PubMed  Google Scholar 

  • Dhillon GS, Brar SK, Kaur S, Verma M (2012) Green approach for nanoparticles biosynthesis by fungi: current trends and applications. Crit Rev Biotechnol 32:49–73

    Article  CAS  PubMed  Google Scholar 

  • Duman M, Caglayan Demirel G, Piskin E (2009) Detection of Mycobacterium tuberculosis complex using surface plasmon resonance based sensors carrying self-assembled nano-overlayers of probe oligonucleotide. Sensor Lett 7:535–542

    Article  CAS  Google Scholar 

  • Duran A, Nombela C (2004) Fungal cell-wall biogenesis: building a dynamic interface with the environment. Microbiology 150:3099–3103

    Article  CAS  PubMed  Google Scholar 

  • Duran N, Seabra AB (2012) Metallic oxide nanoparticles: state of the art in biogenic synthesis and their mechanisms. App Microbiol Biotechnol 95:275–288

    Article  CAS  Google Scholar 

  • Duran N, Marcato PD, Alves OL et al (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:1–8

    Article  Google Scholar 

  • Duran N, Alves OL, Esposito E et al (2006) Production process of silver nanoparticles stabilized by proteins and antibacterial textile process and of effluent treatment of the effluents produced. Patent PIBr 0605681-4, Brazil

  • Duran N, Marcato PD, De Conti R et al (2010) Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. J Braz Chem Soc 21:949–959

    Article  CAS  Google Scholar 

  • Duran N, Marcato PD, Duran M et al (2011) Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi and plants. App Microbiol Biotechnol 90:1609–1624

    Article  CAS  Google Scholar 

  • Dzido G, Markowski P, Małachowska-Jutsz A et al (2015) Rapid continuous microwave-assisted synthesis of silver nanoparticles to achieve very high productivity and full yield: from mechanistic study to optimal fabrication strategy. J Nanopart Res 17:27

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • El-Batal AI, Amin MA, Shehata MMK, Hallol MMA (2013) Synthesis of silver nanoparticles by Bacillus stearothermophilus using gamma radiation and their antimicrobial activity. World App Sci J 22:01–16

    CAS  Google Scholar 

  • Elechiguerra JL, Burt JL, Morones JR et al (2005) Interaction of silver nanoparticles with HIV. J Nanobiotechnol 3:1–10

    Article  Google Scholar 

  • Elia P, Zach R, Hazan S et al (2014) Green synthesis of gold nanoparticles using plant extracts as reducing agents. Int J Nanomed 9:4007–4021

    CAS  Google Scholar 

  • Farkas V (1979) Biosynthesis of cell-walls of fungi. Microbiol Rev 43:117–144

    PubMed Central  CAS  PubMed  Google Scholar 

  • Farrukh A, Akram A, Ghaffar A et al (2013) Design of polymer-brush-grafted magnetic nanoparticles for highly efficient water remediation. ACS Appl Mater Interfaces 5:37843793

    Article  CAS  Google Scholar 

  • Fayaz AM, Balaji K, Girilal M et al (2009) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine 6:103–109

    Article  PubMed  CAS  Google Scholar 

  • Fayaz MA, Girilal M, Mahdy SA et al (2011) Vancomycin bound biogenic gold nanoparticles: a different perspective for development of anti VRSA agents. Proc Biochem 46:636–641

    Article  CAS  Google Scholar 

  • Franci G, Falanga A, Galdiero S et al (2015) Silver nanoparticles as potential antibacterial agents. Molecules 20:8856–8874

    Article  CAS  PubMed  Google Scholar 

  • Fujita Y, Taguchi H (2011) Current status of multiple antigen-presenting peptide vaccine systems: application of organic and inorganic nanoparticles. Chem Central J 5:48

    Article  CAS  Google Scholar 

  • Gade AK, Bonde P, Ingle AP et al (2008) Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobased Mater Bioener 2:243–247

    Article  Google Scholar 

  • Gaikwad S, Ingle A, Gade A et al (2013) Antiviral activity of mycosynthesized silver nanoparticles against Herpes Simplex Virus and Human Parainfluenza Virus Type 3. Int J Nanomed 8:4303–4314

    Google Scholar 

  • Gajbhiye MB, Kesharwani JG, Ingle AP et al (2009) Fungus-mediated synthesis of silver nanoparticles and its activity against pathogenic fungi in combination of Fluconazole. Nanomed NBM 5:282–286

    Article  CAS  Google Scholar 

  • Gajendiran M, Yousuf SMJ, Elangovan V, Balasubramanian S (2014) Gold nanoparticle conjugated PLGA-PEG-SA-PEG-PLGA multiblock copolymer nanoparticles: synthesis, characterization, in vivo release of rifampicin. J Mater Chem B2:418–427

    Article  Google Scholar 

  • Galdiero S, Falanga A, Vitiello M et al (2011) Silver nanoparticles as potential antiviral agents. Molecules 16:894–918

    Article  CAS  Google Scholar 

  • Garg S, Chandra A (2012) Biosynthesis and anthelmintic activity of silver nanoparticles using aqueous extract of Saraca indica leaves. Int J Ther App 7:9–12

    Google Scholar 

  • Gericke M, Pinches A (2006) Microbial production of gold nanoparticles. Gold Bull 39:22–28

    Article  CAS  Google Scholar 

  • Gholami-Shabani MH, Akbarzadeh A, Mortazavi M, Emzadeh MK (2013) Evaluation of the antibacterial properties of silver nanoparticles synthesized with Fusarium oxysporum and Escherichia coli. Int J Life Sci Biotechnol Pharma Res 2:333–348

    Google Scholar 

  • Ghorbani HR, Mehr FP, Poor AK (2014) Extracellular synthesis of copper nanoparticles using culture supernatants of Salmonella typhimurium. J App Pharma Sci 3:016–021

    Google Scholar 

  • Ghosh S, Patil S, Ahire M et al (2012) Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. Int J Nanomed 7:483–496

    CAS  Google Scholar 

  • Goel A (2015) Agricultural applications of nanotechnology. J Biol Chem Res 32:260–266

    Google Scholar 

  • Golinska P, Wypij M, Ingle AP et al (2014) Biogenic synthesis of metal nanoparticles from Actinomycetes: biomedical applications and cytotoxicity. App Microbiol Biotechnol 98:8083–8097

    Article  CAS  Google Scholar 

  • Gonnelli C, Cacioppo F, Giordano C et al (2015) Cucurbita pepo L. extracts as a versatile hydrotropic source for the synthesis of gold nanoparticles with different shapes. Green Chem Lett Rev 8:39–47

    Article  CAS  Google Scholar 

  • Gopinath M, Subbaiya R, Selvam MM, Suresh D (2014) Synthesis of copper nanoparticles from Nerium oleander leaf aqueous extract and its antibacterial activity. Int J Curr Microbiol App Sci 3:814–818

    CAS  Google Scholar 

  • Goswami A, Roy I, Sengupta S, Debnath N (2010) Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films 519:1252–1257

    Article  CAS  Google Scholar 

  • Hainfeld JF, Dilmanian FA, Zhong Z et al (2010) Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma. Phys Med Biol 55:3045–3059

    Article  CAS  PubMed  Google Scholar 

  • He Q, Zhu Z, Jin L et al (2014) Detection of HIV-1 p24 antigen using streptavidin-biotin and gold nanoparticles based immunoassay by inductively coupled plasma mass spectrometry. J Anal At Spectrom 29:1477–1482

    Article  CAS  Google Scholar 

  • He M, Protesescu L, Caputo R et al (2015) A general synthesis strategy for monodisperse metallic and metalloid nanoparticles (In, Ga, Bi, Sb, Zn, Cu, Sn and their alloys) via in situ formed metal long-chain amides. Chem Mater 27:635–647

    Article  CAS  Google Scholar 

  • Hemath NKS, Kumar G, Karthik LB, Rao HKV (2010) Extracellular biosynthesis of silver nanoparticles using the filamentous fungus Penicillium sp. Arch App Sci Res 2:161–167

    CAS  Google Scholar 

  • Holan ZR, Volesky B (1995) Accumulation of cadmium, lead and nickel by fungal and wood biosorbents. App Biochem Biotechnol 53(2):133–146

    Article  CAS  Google Scholar 

  • Honary S, Barabadi H, Gharaei-Fatahabad E, Naghibi F (2013) Green synthesis of silver nanoparticles induced by the fungus Penicillium citrinum. Trop J Pharma Res 12:7–11

    CAS  Google Scholar 

  • Hu RL, Li SR, Kong FJ et al (2014) Inhibition effect of silver nanoparticles on herpes simplex virus 2. Gene Mol Res 13:7022–7028

    Article  CAS  Google Scholar 

  • Huo S, Ma H, Huang K et al (2012) Superior penetration and retention behavior of 50 nm gold nanoparticles in tumors. Cancer Res 73:319–330

    Article  PubMed  CAS  Google Scholar 

  • Hussain MM, Samir TM, Azzazy HM (2013) Unmodified gold nanoparticles for direct and rapid detection of Mycobacterium tuberculosis complex. Clin Biochem 46:633–637

    Article  CAS  PubMed  Google Scholar 

  • Hwang IS, Hwang JH, Choi H et al (2012) Synergistic effects between silver nanoparticles and antibiotics and the mechanisms involved. J Med Microbiol 61:1719–1726

    Article  CAS  PubMed  Google Scholar 

  • Hwang S, Nam J, Song J et al (2014) A sub 6 nanometer plasmonic gold nanoparticle for pH-responsive near-infrared photothermal cancer therapy. New J Chem 38:918–922

    Article  CAS  Google Scholar 

  • Ingle AP, Rai MK (2011) Genetic diversity among Indian phytopathogenic isolates of Fusarium semitectum Berkeley and Ravenel. Adv Biosci Biotechnol 2:142–148

    Article  CAS  Google Scholar 

  • Ingle A, Gade A, Pierrat S et al (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4:141–144

    Article  CAS  Google Scholar 

  • Ingle A, Rai MK, Gade A, Bawaskar M (2009) Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. J Nanopart Res 11:2079–2085

    Article  CAS  Google Scholar 

  • Ingle A, Duran N, Rai M (2014) Bioactivity, mechanism of action and cytotoxicity of copper-based nanoparticles: a review. Appl Microbiol Biotechnol 98:1001–1009

    Article  CAS  PubMed  Google Scholar 

  • Jain N, Bhargava A, Majumdar S et al (2011) Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective. Nanoscale 3:635–641

    Article  CAS  PubMed  Google Scholar 

  • Jayaseelan C, Rahuman AA (2012) Acaricidal efficacy of synthesized silver nanoparticles using aqueous leaf extract of Ocimum canum against Hyalomma anatolicumanatolicum and Hyalomma marginatumisaaci (Acari: Ixodidae). Parasitol Res 111:1369–1378

    Article  PubMed  Google Scholar 

  • Johnson R, Sabnis N, McConathy WJ, Lacko AG (2013) The potential role of nanotechnology in therapeutic approaches for triple negative breast cancer. Pharmaceutics 5:353–370

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kalabegishvili T, Kirkesali E, Rcheulishvili A et al (2012) Synthesis of gold nanoparticles by blue-green algae Spirulina platensis. Adv Sci 4:1–7

    Google Scholar 

  • Kandile NG, Zaky HT, Mohamed MI, Mohamed HM (2010) Silver nanoparticles effect on antimicrobial and antifungal activity of new heterocycles. Bull Kor Chem Soc 31:3530–3538

    Article  CAS  Google Scholar 

  • Kanmani P, Lim ST (2013) Synthesis and structural characterization of silver nanoparticles using bacterial exopolysaccharide and its antimicrobial activity against food and multidrug resistant pathogens. Proc Biochem 48:1099–1106

    Article  CAS  Google Scholar 

  • Kar P, Murmu S, Saha S et al (2014) Anthelmintic efficacy of gold nanoparticles derived from a phytopathogenic fungus, Nigrospora oryzae. Plos One 9:e84693

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Karwa A, Gaikwad S, Rai MK (2011) Mycosynthesis of silver nanoparticles using Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (W Curt:Fr) and their role as antimicrobials and antibiotic activity enhancers. Int J Med Mushrooms 13:483–491

    Article  CAS  PubMed  Google Scholar 

  • Kashyap PL, Kumar S, Srivastava AK, Sharma AK (2013) Myconanotechnology in agriculture: a perspective. World J Microbiol Biotechnol 29:191–207

    Article  CAS  PubMed  Google Scholar 

  • Kathiraven T, Sundaramanickam A, Shanmugam N, Balasubramanian T (2015) Green synthesis of silver nanoparticles using marine algae Caulerpa racemosa and their antibacterial activity against some human pathogens. Appl Nanosci 5:499–504

    Article  CAS  Google Scholar 

  • Kathireswari P, Gomathi S, Saminathan K (2014) Plant leaf mediated synthesis of silver nanoparticles using Phyllanthus niruri and its antimicrobial activity against multi drug resistant human pathogens. Int J Curr Microbiol App Sci 3:960–968

    CAS  Google Scholar 

  • Kaur P, Rajesh Thakur R, Choudhar A (2012) An in vitro study of the antifungal activity of silver/chitosan nanoformulations against important seed borne pathogens. Int J Sci Technol Res 1:83–86

    Google Scholar 

  • Kesarkar R, Oza G, Pandey S et al (2012) Gold nanoparticles: effective as both entry inhibitors and virus neutralizing agents against HIV. J Microbiol Biotech Res 2:276–283

    CAS  Google Scholar 

  • Kim YS, Kim JS, Cho HS et al (2008) Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol 20:575–583

    Article  CAS  PubMed  Google Scholar 

  • Kim SW, Jung JH, Lamsal K et al (2012) Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology 40:53–58

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Klaus-Joerger T, Joerge R, Olsson E, Granqvist CG (2001) Bacteria as workers in the living factory: metal accumulating bacteria and their potential for material sciences a review. Trends Biotechnol 19:15–20

    Article  CAS  PubMed  Google Scholar 

  • Kowshik M, Ashtaputre S, Kharrazi S et al (2003) Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 14:95–100

    Article  CAS  Google Scholar 

  • Krishnakumar S, Divakaran S, Shankar GU, Williams PG, Sasikumar M (2015) Extracellular biosynthesis of silver nanoparticles (Ag-NPs) using Fusarium oxysporum (MTCC-2480) and its antibacterial efficacy against gram negative human pathogens. J Chem Pharma Res 7:62–67

    CAS  Google Scholar 

  • Kumar V, Yadav SK (2009) Plant mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol 184:151–157

    Article  CAS  Google Scholar 

  • Kumar AS, Ansari AA, Ahmad A, Khan MI (2007a) Extracellular biosynthesis of CdS quantum dots by the fungus Fusarium oxysporum. J Biomed Nanotechnol 3:190–194

    Article  CAS  Google Scholar 

  • Kumar SA, Abyaneh MK, Gosavi SW et al (2007b) Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett 29:439–445

    Article  CAS  Google Scholar 

  • Kushwaha A, Singh VK, Bhartariya J et al (2015) Isolation and identification of E. coli bacteria for the synthesis of silver nanoparticles: characterization of the particles and study of antibacterial activity. European J Expt Biol 5:65–70

    Google Scholar 

  • Lara HH, Ayala-Nunez NV, Ixtepan-Turrent LDC, Padilha-Rodrigues C (2010a) Mode of antiviral action of silver nanoparticles against HIV. J Nanobiotecnhol 8:1–10

    Article  CAS  Google Scholar 

  • Lara HH, Ayala-Nunez NV, Ixtepan-Turrent LDC, Padilha-Rodrigues C (2010b) PVP-coated silver nanoparticles block the transmission of cell-free and cell-associated HIV-1 in human cervical culture. J Nanobiotecnhol 8:1–11

    Article  CAS  Google Scholar 

  • Lee IH, Kwon HK, An S et al (2012) Imageable antigen-presenting gold nanoparticle vaccines for effective cancer immunotherapy in vivo. Angew Chem Int Ed 51:8800–8805

    Article  CAS  Google Scholar 

  • Lee W, Kim JK, Lee DG (2014) A novel mechanism for the antibacterial effect of silver nanoparticles on Escherichia coli. Biometals 27:1191–1201

    Article  CAS  PubMed  Google Scholar 

  • Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4:26–49

    Article  CAS  PubMed  Google Scholar 

  • Li Z (2003) Use of surfactant-modified zeolite as fertilizer carriers to control nitrate release. Microporous Mesoporous Mater 61:181–188

    Article  CAS  Google Scholar 

  • Li P, Li J, Wu C et al (2005) Synergistic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles. Nanotechnology 16:1912–1917

    Article  CAS  Google Scholar 

  • Li WR, Xie XB et al (2010) Antibacterial activity and mechanism of silver nanoparticleson Escherichia coli. Appl Microbiol Biotechnol 85:1115–1122

    Article  CAS  PubMed  Google Scholar 

  • Li G, He D, Qian Y et al (2012) Fungus mediated green synthesis of silver nanoparticles using Aspergillus terreus. Int J Mol Sci 13:466–476

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lima R, Feitosa LO, Ballottin D et al (2013) Cytotoxicity and genotoxicity of biogenic silver nanoparticles. J Phys 429:012020

    Google Scholar 

  • Liu F, Wen LX, Li ZZ et al (2006) Porous hollow silica nanoparticles as controlled delivery system for water soluble pesticide. Mat Res Bull 41:2268–2275

    Article  CAS  Google Scholar 

  • Liu C, Jiang D, Xiang G et al (2014) An electrochemical DNA biosensor for the detection of Mycobacterium tuberculosis, based on signal amplification of graphene and a gold nanoparticle-polyaniline nanocomposite. Analyst 139:5460–5465

    Article  CAS  PubMed  Google Scholar 

  • Madhusudhan A, Reddy GB, Venkatesham M et al (2014) Efficient pH dependent drug delivery to target cancer cells by gold nanoparticles capped with carboxymethyl chitosan. Int J Mol Sci 15:8216–8234

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Madigan MT, Martinko JM (2006) Brock biology of microorganisms, vol 1. New Jersey, Pearson Prentice Hall

    Google Scholar 

  • Malarkodi C, Rajeshkumar S, Paulkumar K et al (2013) Bacterial synthesis of silver nanoparticles by using optimized biomass growth of Bacillus sp. Nanosci Nanotechnol Int J 3:26–32

    Google Scholar 

  • Marimuthu S, Rahuman AA, Jayaseelan C et al (2013) Acaricidal activity of synthesized titanium dioxide nanoparticles using Calotropis gigantea against Rhipicephalus microplus and Haemaphysalis bispinosa. Asian Pacific J Trop Med 6:682–688

    Article  CAS  Google Scholar 

  • McLaughlin MF, Woodward J, Boll RA et al (2013) Gold coated lanthanide phosphate nanoparticles for targeted alpha generator radiotherapy. PLoS ONE 8:e54531

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mehra RK, Winge DR (1991) Metal ion resistance in fungi: molecular mechanisms and their regulated expression. J Cell Biochem 45:30–40

    Article  CAS  PubMed  Google Scholar 

  • Millan G, Agosto F, Vázquez M (2008) Use of clinoptilolite as a carrier for nitrogen fertilizers in soils of the Pampean regions of Argentina. Cien Inv Agr 35:293–302

    Article  Google Scholar 

  • Miri A, Sarani M, Rezazade Bazaz M, Darroudi M (2015) Plant-mediated biosynthesis of silver nanoparticles using Prosopis farcta extract and its antibacterial properties. Spectrochim Acta A Mol Biomol Spectrosc 141:287–291

    Article  CAS  PubMed  Google Scholar 

  • Mohammadian A, Shaojaosadati SA, Rezee MH (2007) Fusarium oxysporum mediates photo-generation of silver nanoparticles. Scientia Iranica 14:323–326

    CAS  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A et al (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353

    Article  CAS  PubMed  Google Scholar 

  • Mourato A, Gadanho M, Lino AR, Tenreiro R (2011) Biosynthesis of crystalline silver and gold nanoparticles by extremophilic yeasts. Bioinorg Chem Appl 2011:546074. doi:10.1155/2011/546074

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mousavi SR, Rezaei M (2011) Nanotechnology in agriculture and food production. J Appl Environ Biol Sci 1:414–419

    Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D et al (2001) Bioreduction of AuCl4 ions by the fungus Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed 40:3585–3588

    Article  CAS  Google Scholar 

  • Mukherjee P, Roy M, Mandal BP et al (2008) Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology 19:103–110

    Google Scholar 

  • Muthukumaran U, Govindarajan M, Rajeswary M (2015) Mosquito larvicidal potential of silver nanoparticles synthesized using Chomelia asiatica (Rubiaceae) against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 114:989–999

    Article  PubMed  Google Scholar 

  • Naderi MR, Danesh-Shahraki A (2013) Nanofertilizers and their roles in sustainable agriculture. Intl J Agri Crop Sci 5:2229–2232

    Google Scholar 

  • Naika HR, Lingaraju K, Manjunath K et al (2015) Green synthesis of CuO nanoparticles using Gloriosa superba L. extract and their antibacterial activity. J Taibah Uni Sci 9:7–12

    Article  Google Scholar 

  • Namasivayam SKR, Ganesh S, Avimanyu S (2011) Evaluation of anti-bacterial activity of silver nanoparticles synthesized from Candida glabrata and Fusarium oxysporum. Int J Med Microbiol Res 1:130–136

    Google Scholar 

  • Nanda A, Majeed S (2014) Enhanced antibacterial efficacy of biosynthesized AgNPs from Penicillium glabrum (MTCC1985) pooled with different drugs. Int J Pharm Tech Res 6:217–223

    CAS  Google Scholar 

  • Naqvi SZ, Kiran U, Ali M et al (2013) Combined efficacy of biologically synthesized silver nanoparticles and different antibiotics against multidrug-resistant bacteria. Int J Nanomed 8:3187–3195

    Article  CAS  Google Scholar 

  • Narasimha G, Janardhan Alzohairy M, Khadri H, Mallikarjuna K (2013) Extracellular synthesis, characterization and antibacterial activity of silver nanoparticles by Actinomycetes isolative. Int J Nano Dimens 4:77–83

    Google Scholar 

  • Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci 156:1–13

    Article  CAS  PubMed  Google Scholar 

  • Naseem T, Farrukh MA (2015) Antibacterial activity of green synthesis of iron nanoparticles using Lawsonia inermis and Gardenia jasminoides leaves extract. J Chem. doi:10.1155/2015/912342

    Google Scholar 

  • Nasrollahi A, Pourshamsian K, Mansourkiaee P (2011) Antifungal activity of silver nanoparticles on some of fungi. Int J Nanotechnol 1:233–239

    CAS  Google Scholar 

  • Ortega FG, Fernandez-Baldo MA, Fernandez JG et al (2015) Study of antitumor activity in breast cell lines using silver nanoparticles produced by yeast. Int J Nanomed 10:2021–2031

    CAS  Google Scholar 

  • Pandit R (2015) Green synthesis of silver nanoparticles from seed extract of Brassica nigra and its antibacterial activity. Nusantara Biosci 7:15–19

    Google Scholar 

  • Parial D, Patra HK, Dasgupta AKR, Pala R (2012) Screening of different algae for green synthesis of gold nanoparticles. Europ J Phycol 1:22–29

    Article  CAS  Google Scholar 

  • Park YM, Lee SJ, Kim YS et al (2013) Nanoparticle-based vaccine delivery for cancer immunotherapy. Immune Netw 13:177–183

    Article  PubMed Central  PubMed  Google Scholar 

  • Patel V, Berthold D, Puranik P, Gantar M (2015) Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity. Biotechnol Rep 5:112–119

    Article  Google Scholar 

  • Pavani KV, Kumar NS, Sangameswaran BB (2012) Synthesis of lead nanoparticles by Aspergillus species. Pol J Microbiol 61:61–63

    CAS  PubMed  Google Scholar 

  • Raheman F, Deshmukh S, Ingle A et al (2011) Silver nanoparticles: novel antimicrobial agent synthesized from an endophytic fungus Pestalotia sp. isolated from leaves of Syzygium cumini (L). Nano Biomed Eng 3:174–178

    Article  CAS  Google Scholar 

  • Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect-pests. Appl Microbiol Biotechnol 94:287–293

    Article  CAS  PubMed  Google Scholar 

  • Rai M, Yadav A, Gade A (2008) Current trends in phytosynthesis of metal nanoparticles. Crit Rev Biotechnol 28:277–284

    Article  CAS  PubMed  Google Scholar 

  • Rai M, Yadav A, Bridge P, Gade A (2009a) Myconanotechnology: a new and emerging science. In: Rai MK, Bridge PD (eds) Applied mycology. CAB International, New York, pp 258–267

    Chapter  Google Scholar 

  • Rai MK, Yadav AP, Gade AK (2009b) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–82

    Article  CAS  PubMed  Google Scholar 

  • Rai M, Gade AK, Gaikwad S et al (2012a) Biomedical applications of nanobiosensors: the state of the art. J Braz Chem Soc 23:14–24

    CAS  Google Scholar 

  • Rai V, Acharya S, Dey N (2012b) Implications of nanobiosensors in agriculture. J Biomater Nanobiotechnol 3:315–324

    Article  CAS  Google Scholar 

  • Rai M, Ribeiro C, Mattoso L, Duran N (2015a) Nanotechnologies in food and agriculture. Springer-Verlag, Germany, doi:10.1007/978-3-319-14024-7

    Google Scholar 

  • Rai M, Ingle AP, Gade A, Duran N (2015b) Synthesis of silver nanoparticles by Phoma gardeniae and in vitro evaluation of their efficacy against human disease causing bacteria and fungi. IET Nanobiotechnol 9:71–75

    Article  PubMed  Google Scholar 

  • Rai M, Ingle AP, Yadav A, Birla S, Santos CAD (2015c) Strategic role of selected noble metal nanoparticles in medicine. Crit Rev Microbiol. doi:10.3109/1040841X.2015.1018131

    Google Scholar 

  • Rajan CS (2011) Nanotechnology in groundwater remediation. Int J Envir Sci Dev 2:182–187

    Article  Google Scholar 

  • Riddin TL, Gericke M, Whiteley CG (2006) Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum f sp. lycopersici using response surface methodology. Nanotechnology 17:3482–3489

    Article  CAS  PubMed  Google Scholar 

  • Roy S, Mukherjee T, Chakraborty S, Das TK (2013) Biosynthesis, characterization and antifungal activity of silver nanoparticles synthesized by the fungus Aspergillus foetidus MTCC8876. Digest J Nanomater Biostruct 8:197–205

    Google Scholar 

  • Ruden S, Hilpert K, Berditsch M et al (2009) Synergistic interaction between silver nanoparticles and membrane-permeabilizing antimicrobial peptides. Antimicrob Ag Chemother 53:3538–3540

    Article  CAS  Google Scholar 

  • Sadowski Z, Maliszewska GB, Polowczyk I, Kozlecki T (2008) Synthesis of silver nanoparticles using microorganisms. Mater Sci Poland 26:419–425

    CAS  Google Scholar 

  • Said DE, Elsamad LM, Gohar YM (2012) Validity of silver, chitosan, and curcumin nanoparticles as anti-Giardia agents. Parasitol Res 111:545–554

    Article  CAS  PubMed  Google Scholar 

  • Saminathan K (2015) Biosynthesis of silver nanoparticles using soil Actinomycetes Streptomyces sp. Int J Curr Microbiol App Sci 4:1073–1083

    Google Scholar 

  • Sanghi R, Verma P (2009) Biomimetic synthesis and characterization of protein capped silver nanoparticles. Bioresour Technol 100:502–504

    Article  CAS  Google Scholar 

  • Sastry M, Ahmad A, Khan MI, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycetes. Curr Sci 85:162–170

    CAS  Google Scholar 

  • Sattari M, Hashjin GS, Ownagh A et al (2012) Effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Pseudomonas aeruginosa. Res Pharma Sci 7:S205

    Google Scholar 

  • Savithramma N, Rao ML, Rukmini K, Suvarnalatha-Devi P (2011) Antimicrobial activity of silver nanoparticles synthesized by using medicinal plants. Int J Chem Technol Res 3:1394–1402

    CAS  Google Scholar 

  • Shankar SS, Ahmad A, Pasricha R, Sastry M (2003) Bioreduction of chloroaurate ions by Geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13:1822–1826

    Article  CAS  Google Scholar 

  • Shantkriti S, Rani P (2014) Biological synthesis of copper nanoparticles using Pseudomonas fluorescens. Int J Curr Microbiol App Sci 3:374–383

    Google Scholar 

  • Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145:83–96

    Article  CAS  PubMed  Google Scholar 

  • Sheikhloo Z, Salouti M (2011) Intracellular biosynthesis of gold nanoparticles by the fungus Penicillium chrysogenum. Int J Nanosci Nanotechnol 7:102–105

    Google Scholar 

  • Shelar GB, Chavan AM (2014) Fungus–mediated biosynthesis of silver nanoparticles and its antibacterial activity. Arch App Sci Res 6:111–114

    CAS  Google Scholar 

  • Shende SS, Ingle AP, Gade A, Rai M (2015) Green synthesis of copper nanoparticles by Citrus medica Linn. (Idilimbu) juice and its antimicrobial activity. World J Microbiol Biotechnol. doi:10.1007/s11274-015-1840-3

    PubMed  Google Scholar 

  • Singh R, Misra V, Singh RP (2011) Remediation of Cr(VI) contaminated soil by zerovalent iron nanoparticles (nZVI) entrapped in calcium alginate beads. Second International Conference on Environmental Science and Development, IPCBEE 4. IACSIT Press, Singapore

  • Singh R, Shedbalkar UU, Wadhwani SA, Chopade BA (2015a) Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications. Appl Microbiol Biotechnol 99:4579–4593

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Singh BK, Yadav SM, Gupta AK (2015b) Applications of nanotechnology in agricultural and their role in disease management. Res Nanosci Nanotechnol 5:1–5

    Article  Google Scholar 

  • Soni N, Prakash S (2012) Synthesis of gold nanoparticles by the fungus Aspergillus niger and its efficacy against mosquito larvae. Rep Parasitol 2:1–7

    Google Scholar 

  • Srivastava SK, Yamada R, Ogino C, Kondo A (2013) Biogenic synthesis and characterization of gold nanoparticles by Escherichia coli K12 and its heterogeneous catalysis in degradation of 4-nitrophenol. Nanoscale Res Lett 8:70. doi:10.1186/1556-276X-8-70

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Subbarao V, Kartheek V, Sirisha D (2013) Slow release of potash fertilizer through polymer coating. Int J Appl Sci Eng 11(1):25

    Google Scholar 

  • Suganya KS, Govindaraju K, Kumar VG (2015) Blue green alga mediated synthesis of gold nanoparticles and its antibacterial efficacy against Gram positive organisms. Mater Sci Eng C Mater Biol Appl 47:351–356

    Article  PubMed  CAS  Google Scholar 

  • Sunitha S, Rao AN, Abraham LS et al (2015) Enhanced bactericidal effect of silver nanoparticles synthesized using marine brown macro algae. J Chem Pharma Res 7(3):191–195

    CAS  Google Scholar 

  • Taglietti A, Yuri A, Fernandez D et al (2012) Antibacterial activity of glutathione-coated silver nanoparticles against gram positive and gram negative bacteria. Langmuir 28:8140–8148

    Article  CAS  PubMed  Google Scholar 

  • Tefry JC, Wooley DP (2012) Rapid assessment of antiviral activity and cytotoxicity of silver nanoparticles using a novel application of the tetrazolium-based colorimetric assay. J Virol Methods 183:19–24

    Article  CAS  Google Scholar 

  • Telling ND, Coker VS, Cutting RS et al (2009) Remediation of Cr(VI) by biogenic magnetic nanoparticles: an X-ray magnetic circular dichroism study. Appl Phys Lett 95:10

    Article  CAS  Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomedicine 6:257–262

    Article  CAS  PubMed  Google Scholar 

  • Thangapandiyan S, Prema P (2012) Chemically fabricated silver nanoparticles enhances the activity of antibiotics against selected human bacterial pathogens. Int J Pharm Sci Res 3:1415–1422

    CAS  Google Scholar 

  • Thiruppathiraja C, Kamatchiammal S, Adaikkappan P et al (2011) Specific detection of Mycobacterium sp. genomic DNA using dual labeled gold nanoparticle based electrochemical biosensor. Anal Biochem 417:73–79

    Article  CAS  PubMed  Google Scholar 

  • Tile VA, Bholay AD (2012) Biosynthesis of silver nanoparticles and its antifungal activities. J Environ Res Develop 7:338–345

    Google Scholar 

  • Turner AP (2000) Biosensors: sense and sensitivity. Science 290:1315–1317

    Article  CAS  PubMed  Google Scholar 

  • Ulrichs C, Mewis I, Goswami A (2005) Crop diversification aiming nutritional security in West Bengal: biotechnology of stinging capsules in nature’s water-blooms. Ann Tech Issue of State Agri Technologists Service Assoc, pp 1–18

  • Vahabi K, Mansoori GA, Karimi S (2011) Biosynthesis of silver nanoparticles by the fungus Trichoderma reesei. Insciences J 1:65–79

    Article  CAS  Google Scholar 

  • Vala AK, Shah S, Patel R (2014) Biogenesis of silver nanoparticles by marine derived fungus Aspergillus flavus from Bhavnagar coast, gulf of Khambat, India. J Mar Biol Oceanogr 3(1):1–3

    Google Scholar 

  • Verma VC, Kharwar RN, Gange AC (2010) Biosynthesis of antimicrobial silver nanoparticles by endophytic fungus Aspergillus clavatus. Biomedicine 5:33–40

    CAS  Google Scholar 

  • Vivekanandan KEK, Raj KG, Kumaresana S, Pandi M (2012) Biosynthesis of silver nanoparticle activity against bacterial strain, cephalexin antibiotic synergistic activity. Int J Curr Sci 4:1–7

    Google Scholar 

  • Wang L, Li Z, Zhang G et al (2007) Oil-in-water nanoemulsions for pesticide formulations. J Colloid Interface Sci 314:230–235

    Article  CAS  PubMed  Google Scholar 

  • Xiang DX, Chen Q, Pang L et al (2011) Inhibitory effects of silver nanoparticles on H1N1 influenza A virus in vitro. J Virol Methods 178:137–142

    Article  CAS  PubMed  Google Scholar 

  • Xiu XM, Zhang QB, Pupaala HL et al (2012) Negligible particle-specific antibaacterial activity of silver nanoparticles. NanoLett 12:4271–4275

    Article  CAS  Google Scholar 

  • Xu Y, Gao C, Li X et al (2013) In vitro antifungal activity of silver nanoparticles against ocular pathogenic filamentous fungi. J Ocul Pharmacol Ther 29:270–274

    Article  PubMed  CAS  Google Scholar 

  • Zhang WX (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332

    Article  CAS  Google Scholar 

  • Zhang X, Yan S, Tyagi RD, Surampalli RY (2011) Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere 82:489–494

    Article  CAS  PubMed  Google Scholar 

  • Zheng L, Jia L, Li B et al (2012) A sandwich HIV p24 amperometric immunosensor based on a direct gold electroplating-modified electrode. Molecules 17:5988–6000

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Zhang X, Yua X et al (2008) The effect of conjugation to gold nanoparticles on the ability of low molecular weight chitosan to transfer DNA vaccine. J Shen Biomaterials 29:111–117

    Article  CAS  Google Scholar 

Download references

Acknowledgments

MKR thankfully acknowledges financial support provided by Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (Fapesp no. 2012/03731-3). This paper was elaborated with the financial support of the project MSMT CR IRP 207/2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahendra Rai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, A., Kon, K., Kratosova, G. et al. Fungi as an efficient mycosystem for the synthesis of metal nanoparticles: progress and key aspects of research. Biotechnol Lett 37, 2099–2120 (2015). https://doi.org/10.1007/s10529-015-1901-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-015-1901-6

Keywords

Navigation