Advertisement

Biotechnology Letters

, Volume 37, Issue 4, pp 741–751 | Cite as

Making metabolism accessible and meaningful: is the definition of a central metabolic dogma within reach?

  • Robert A. LaRossaEmail author
Perspectives
  • 349 Downloads

Abstract

Intermediary metabolism, a dominant research area before the emergence of molecular biology, is attracting renewed interest for fundamental and applied reasons as documented here. Nonetheless, the field may appear to be a thicket precluding entry to all but the most determined. Here we present a metabolic overview that makes this important and fascinating area accessible to a broad range of the molecular biological and biotechnological communities that are being attracted to biological problems crying out for metabolic solutions. This is accomplished by identifying seven key concepts, a so-called metabolic central dogma, that provide a core understanding analogous to the “Central Dogma of Molecular Biology” which focused upon maintenance and flow of genetic information.

Keywords

Abnormal metabolism Agricultural applications Fermentation medical applications Metabolic central dogma Metabolic errors Metabolic regulation Omics 

Notes

Acknowledgments

This work has been greatly influenced by my association with mentors (the late Phil Hartman and Saul Roseman, Dieter Söll) and colleagues (Barry Bochner, Zhixiong Xue, Tina Van Dyk and Dana Smulski) all of whom are greatly appreciated.

References

  1. Ames BN (2004) A role for supplements in optimizing health: the metabolic tuneup. Arch Biochem Biophys 423:227–234CrossRefPubMedGoogle Scholar
  2. Baba T, Ara T, Hasegawa M, Takai Y et al (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2(2006):008Google Scholar
  3. Bennett BD, Kimball EH, Gao M, Osterhout R et al (2009) Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat Chem Biol 5:593–599CrossRefPubMedCentralPubMedGoogle Scholar
  4. Bochner BR (2009) Global phenotypic characterization of bacteria. FEMS Microbiol Rev 33:191–205CrossRefPubMedCentralPubMedGoogle Scholar
  5. Bogosian G, Violand BN, Dorward-King EJ, Workman WE et al (1989) Biosynthesis and incorporation into protein of norleucine by Escherichia coli. J Biol Chem 264:531–539PubMedGoogle Scholar
  6. Dailey FE, Cronan JE Jr (1986) Acetohydroxy acid synthase I, a required enzyme for isoleucine and valine biosynthesis in Escherichia coli K-12 during growth on acetate as the sole carbon source. J Bacteriol 165:453–460PubMedCentralPubMedGoogle Scholar
  7. Duggleby RG, McCourt JA, Guddat LW (2008) Structure and mechanism of inhibition of plant acetohydroxyacid synthase. Plant Physiol Biochem 46:309–324CrossRefPubMedGoogle Scholar
  8. Eschenburg S, Healy ML, Priestman MA, Lushington GH et al (2002) How the mutation glycine96 to alanine confers glyphosate insensitivity to 5-enolpyruvylshikimate-3-phosphate synthase from Escherichia coli. Planta 216:129–135CrossRefPubMedGoogle Scholar
  9. Feist AM, Palsson BO (2010) The biomass objective function. Curr Opin Microbiol 13:344–349CrossRefPubMedCentralPubMedGoogle Scholar
  10. Friden P, Tsui P, Okamoto K, Freundlich M (1984) Interaction of cyclic AMP receptor protein with the ilvB biosynthetic operon in E. coli. Nucleic Acid Res 12:8145–8160CrossRefPubMedCentralPubMedGoogle Scholar
  11. Funke T, Han H, Healy-Fried ML, Fischer M et al (2006) Molecular basis for the herbicide resistance of Roundup Ready crops. Proc Natl Acad Sci USA 103:13010–13015CrossRefPubMedCentralPubMedGoogle Scholar
  12. Gallagher LA, Shendure J, Manoil C (2011) Genome-scale identification of resistance functions in Pseudomonas aeruginosa using Tn-seq. MBio 2:e00315-10CrossRefPubMedCentralPubMedGoogle Scholar
  13. Giaever G, Nislow C (2014) The yeast deletion collection: a decade of functional genomics. Genetics 197:451–465CrossRefPubMedCentralPubMedGoogle Scholar
  14. Giaever G, Chu AM, Ni L, Connelly C et al (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391CrossRefPubMedGoogle Scholar
  15. Harper MA, Chen Z, Toy T, Machado IM et al (2011) Phenotype sequencing: identifying the genes that cause a phenotype directly from pooled sequencing of independent mutants. PLoS One 6:e16517CrossRefPubMedCentralPubMedGoogle Scholar
  16. He M, Nie YF, Xu P (2003) A T42M substitution in bacterial 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) generates enzymes with increased resistance to glyphosate. Biosci Biotechnol Biochem 67:1405–1409CrossRefPubMedGoogle Scholar
  17. Hogan DJ, Riordan DP, Gerber AP, Herschlag D et al (2008) Diverse RNA-binding proteins interact with functionally related sets of RNAs, suggesting an extensive regulatory system. PLoS Biol 6:e255CrossRefPubMedCentralPubMedGoogle Scholar
  18. Holliday GL, Mitchell JB, Thornton JM (2009) Understanding the functional roles of amino acid residues in enzyme catalysis. J Mol Biol 390:560–577CrossRefPubMedGoogle Scholar
  19. Horswill AR, Dudding AR, Escalante-Semerena JC (2001) Studies of propionate toxicity in Salmonella enterica identify 2-methylcitrate as a potent inhibitor of cell growth. J Biol Chem 276:19094–19101CrossRefPubMedGoogle Scholar
  20. Inoglia N, Brar GA, Rouskin S, McGeachy AM et al (2012) The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat Protoc 7:1534–1550CrossRefGoogle Scholar
  21. Kacser H, Burns JA (1973) The control of flux. Symp Soc Exp Biol 27:65–104PubMedGoogle Scholar
  22. LaRossa RA, Schloss JV (1984) The sulfonylurea herbicide sulfometuron methyl is an extremely potent and specific inhibitor of acetolactate synthase in Salmonella typhimurium. J Biol Chem 259:8753–8757PubMedGoogle Scholar
  23. LaRossa RA, Van Dyk TK (1987) Metabolic mayhem caused by 2-ketoacid imbalances. Bioessays 7:125–130CrossRefPubMedGoogle Scholar
  24. LaRossa RA, Van Dyk TK, Smulski DR (1987) Toxic accumulation of α-ketobutyrate caused by inhibition of the branched-chain amino acid biosynthetic enzyme acetolactate synthase in Salmonella typhimurium. J Bacteriol 169:1372–1378PubMedCentralPubMedGoogle Scholar
  25. Lin SJ, Guarente L (2003) Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease. Curr Opin Cell Biol 15:241–246CrossRefPubMedGoogle Scholar
  26. Long CP, Antoniewicz MR (2014) Metabolic flux analsyis of Escherichia coli knockouts: lessons from the Keio collection and future outlook. Curr Opin Biotech 28:127–133CrossRefPubMedGoogle Scholar
  27. Mäder U, Hennig S, Hecker M, Homuth G (2004) Transcriptional organization and posttranscriptional regulation of the Bacillus subtilis branched-chain amino acid biosynthesis genes. J Bacteriol 186:2240–2252CrossRefPubMedCentralPubMedGoogle Scholar
  28. Marini NJ, Gin J, Ziegle J, Keho KH et al (2008) The prevalence of folate-remedial MTHFR enzyme variants in humans. Proc Natl Acad Sci USA 105:8055–8060CrossRefPubMedCentralPubMedGoogle Scholar
  29. Müntz K, Christov V, Saalbach G, Saalbach I et al (1998) Genetic engineering for high methionine grain legumes. Nahrung 42:125–127CrossRefPubMedGoogle Scholar
  30. Neidhardt FC, Ingraham JL, Schaechter M (1990) Physiology of the bacterial cell. A molecular approach. Sinauer Associates, SunderlandGoogle Scholar
  31. Otero JM, Cimini D, Patil KR, Poulsen SG et al (2013) Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory. PLoS One 8:e54144CrossRefPubMedCentralPubMedGoogle Scholar
  32. Rabinowitz JD, Vastag L (2012) Teaching the design principles of metabolism. Nat Chem Biol 8:497–501CrossRefPubMedCentralPubMedGoogle Scholar
  33. Richaud C, Mengin-Lecreulx D, Pochet S, Johnson EJ et al (1993) Directed evolution of biosynthetic pathways. Recruitment of cysteine thioethers for constructing the cell wall of Escherichia coli. J Biol Chem 268:26827–26835PubMedGoogle Scholar
  34. Sundaraj S, Guo A, Habiab-Nazhad B, Rouani M et al (2004) The cybercell database (CCDB); a comprehensive, self-updating, relational database to coordinate and facilitate in silico modeling of E. coli. Nucleic Acid Res 32:D293–D295CrossRefGoogle Scholar
  35. Walsh K, Koshland DE Jr (1985) Branch point control by the phosphorylation state of isocitrate dehydrogenase. A quantitative examination of fluxes during a regulatory transition. J Biol Chem 260:8430–8437PubMedGoogle Scholar
  36. Wang Y, Liu CL, Storey JD, Tibshirani RJ et al (2002) Precision and functional specificity in mRNA decay. Proc Natl Acad Sci USA 99:5860–5865CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Red Jay Consulting LLCChadds FordUSA

Personalised recommendations