Advertisement

Biotechnology Letters

, Volume 37, Issue 4, pp 779–785 | Cite as

CXCL10/XCL1 fusokine elicits in vitro and in vivo chemotaxis

  • Yessica E. Sanchez-Lugo
  • Jose J. Perez-Trujillo
  • Yolanda Gutierrez-Puente
  • Aracely Garcia-Garcia
  • Humberto Rodriguez-Rocha
  • Oralia Barboza-Quintana
  • Gerardo E. Muñoz-Maldonado
  • Odila Saucedo-Cardenas
  • Roberto Montes de Oca-Luna
  • Maria J. Loera-AriasEmail author
Original Research Paper

Abstract

Fusokines are proteins formed by the fusion of two cytokines. They have greater bioavailability and therapeutic potential than individual cytokines or a combination of different cytokines. Interferon-gamma-inducible protein 10 (CXCL10) and lymphotactin (XCL1) are members of the chemotactic family of cytokines, which induce tumor regression by eliciting immune-system cell chemotaxis. We engineered a replication-deficient adenoviral system expressing CXCL10/XCL1 fusokine (Ad FIL) and assessed its chemotactic response in vitro and in vivo. The CXCL10/XCL1 fusokine elicited a greater chemotactic effect in IL-2 stimulated lymphocytes than individual or combined cytokines in vitro. CXCL10/XCL1 fusokine biological activity was demonstrated in vivo by intratumoral chemoattraction of CXCR3+ cells. Thus, this novel CXCL10/XCL1 fusokine may represent a potential tool for gene therapy treatment of cancer and other illnesses that require triggering immune-system cell recruitment.

Keywords

Adenovirus Cancer therapy CXCL10 Fusokine Gene therapy Immunotherapy Interferon-gamma-inducible protein 10 Lymphotactin 

Notes

Acknowledgments

This work was supported by Programa de Apoyo a la Investigación en Ciencia y Tecnología (PAICYT) No. SA381-10 from the UANL, and by ConsejoNacional de Ciencia y Tecnología (CONACYT) Grant No. CB-10-158509. YESL and JJPT were recipients of scholarships from CONACYT.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Cairns CM, Gordon JR, Li F et al (2001) Lymphotactin expression by engineered myeloma cells drives tumor regression: mediation by CD4+ and CD8+ T cells and neutrophils expressing XCR1 receptor. J Immunol Baltim Md 1950 167:57–65Google Scholar
  2. Cheng W-F, Hung C-F, Chai C-Y et al (2001) Tumor-specific immunity and antiangiogenesis generated by a DNA vaccine encoding calreticulin linked to a tumor antigen. J Clin Invest 108:669–678CrossRefPubMedCentralPubMedGoogle Scholar
  3. Dufour JH, Dziejman M, Liu MT et al (2002) IFN-γ-inducible protein 10 (IP-10; CXCL10)-deficient mice reveal a role for IP-10 in effector T cell generation and trafficking. J Immunol 168:3195–3204. doi: 10.4049/jimmunol.168.7.3195 CrossRefPubMedGoogle Scholar
  4. Gattinoni L, Powell DJ, Rosenberg SA, Restifo NP (2006) Adoptive immunotherapy for cancer: building on success. Nat Rev Immunol 6:383–393CrossRefPubMedCentralPubMedGoogle Scholar
  5. Gomez-Gutierrez JG, Elpek KG, de Oca-Luna RM et al (2007) Vaccination with an adenoviral vector expressing calreticulin-human papillomavirus 16 E7 fusion protein eradicates E7 expressing established tumors in mice. Cancer Immunol Immunother CII 56:997–1007CrossRefGoogle Scholar
  6. Gooden MJM, de Bock GH, Leffers N et al (2011) The prognostic influence of tumour-infiltrating lymphocytes in cancer: a systematic review with meta-analysis. Br J Cancer 105:93–103CrossRefPubMedCentralPubMedGoogle Scholar
  7. Huang H, Xiang J (2004) Synergistic effect of lymphotactin and interferon gamma-inducible protein-10 transgene expression in T-cell localization and adoptive T-cell therapy of tumors. Int J Cancer J Int Cancer 109:817–825CrossRefGoogle Scholar
  8. Källberg M, Wang H, Wang S et al (2012) Template-based protein structure modeling using the RaptorX web server. Nat Protoc 7:1511–1522CrossRefPubMedGoogle Scholar
  9. Lei Y, Takahama Y (2012) XCL1 and XCR1 in the immune system. Microbes Infect Inst Pasteur 14:262–267CrossRefGoogle Scholar
  10. Proudfoot AEI (2002) Chemokine receptors: multifaceted therapeutic targets. Nat Rev Immunol 2:106–115CrossRefPubMedGoogle Scholar
  11. Raman D, Baugher PJ, Thu YM, Richmond A (2007) Role of chemokines in tumor growth. Cancer Lett 256:137–165CrossRefPubMedCentralPubMedGoogle Scholar
  12. Russell HV, Strother D, Mei Z et al (2007) Phase I trial of vaccination with autologous neuroblastoma tumor cells genetically modified to secrete IL-2 and lymphotactin. J Immunother Hagerstown Md 1997 30:227–233Google Scholar
  13. Wang P, Yang X, Xu W et al (2010) Integrating individual functional moieties of CXCL10 and CXCL11 into a novel chimeric chemokine leads to synergistic antitumor effects: a strategy for chemokine-based multi-target-directed cancer therapy. Cancer Immunol Immunother CII 59:1715–1726CrossRefGoogle Scholar
  14. Wang X, Lu X-L, Zhao H-Y et al (2013) A novel recombinant protein of IP10-EGFRvIIIscFv and CD8(+) cytotoxic T lymphocytes synergistically inhibits the growth of implanted glioma in mice. Cancer Immunol Immunother CII 62:1261–1272CrossRefGoogle Scholar
  15. Wansom D, Light E, Thomas D et al (2012) Infiltrating lymphocytes and human papillomavirus-16 associated oropharynx cancer. Laryngoscope 122:121–127CrossRefPubMedCentralPubMedGoogle Scholar
  16. Wennerberg E, Kremer V, Childs R, Lundqvist A (2014) CXCL10-induced migration of adoptively transferred human natural killer cells toward solid tumors causes regression of tumor growth in vivo. Cancer Immunol Immunother CII. doi: 10.1007/s00262-014-1629-5 Google Scholar
  17. Williams P, Galipeau J (2011) GM-CSF–based fusion Cytokines as ligands for immune modulation. J Immunol 186:5527–5532CrossRefPubMedGoogle Scholar
  18. Yang X, Chu Y, Wang Y et al (2006) Targeted in vivo expression of IFN-gamma-inducible protein 10 induces specific antitumor activity. J Leukoc Biol 80:1434–1444CrossRefPubMedGoogle Scholar
  19. Zhang J, Zhou Z, Wang C et al (2011) Reduced tumorigenesis of EG7 after interleukin-10 gene transfer and enhanced efficacy in combination with intratumorally injection of adenovirus-mediated lymphotactin and the underlying mechanism. Cancer Immunol Immunother CII 60:559–573CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Yessica E. Sanchez-Lugo
    • 1
  • Jose J. Perez-Trujillo
    • 1
  • Yolanda Gutierrez-Puente
    • 2
  • Aracely Garcia-Garcia
    • 1
  • Humberto Rodriguez-Rocha
    • 1
  • Oralia Barboza-Quintana
    • 3
  • Gerardo E. Muñoz-Maldonado
    • 4
  • Odila Saucedo-Cardenas
    • 1
    • 5
  • Roberto Montes de Oca-Luna
    • 1
  • Maria J. Loera-Arias
    • 1
    Email author
  1. 1.Departamento de Histologia, Facultad de MedicinaUniversidad Autonoma de Nuevo Leon (UANL)MonterreyMexico
  2. 2.Departamento de Bioquimica, Facultad de Ciencias BiologicasUniversidad Autonoma de Nuevo Leon (UANL)MonterreyMexico
  3. 3.Servicio de Anatomia Patologica y Citopatologia, Hospital Universitario “Dr. Jose Eleuterio Gonzalez” de la Facultad de MedicinaUniversidad Autonoma de Nuevo Leon (UANL)MonterreyMexico
  4. 4.Servicio de Cirugia General, Hospital Universitario “Dr. Jose Eleuterio González” de la Facultad de MedicinaUniversidad Autonoma de Nuevo Leon (UANL)MonterreyMexico
  5. 5.Division de Genética, Centro de Investigacion Biomedica del NoresteInstituto Mexicano del Seguro Social (IMSS)MonterreyMexico

Personalised recommendations