Advertisement

Biotechnology Letters

, Volume 37, Issue 2, pp 265–279 | Cite as

Recent developments in therapeutic protein expression technologies in plants

  • Shah Fahad
  • Faheem Ahmed Khan
  • Nuruliarizki Shinta Pandupuspitasari
  • Muhammad Mahmood Ahmed
  • Yu Cai Liao
  • Muhammad Tahir Waheed
  • Muhammad Sameeullah
  • Darkhshan
  • Saddam Hussain
  • Shah Saud
  • Shah Hassan
  • Amanullah Jan
  • Mohammad Tariq Jan
  • Chao Wu
  • Ma Xiao Chun
  • Jianliang Huang
Review

Abstract

Infectious diseases and cancers are some of the commonest causes of deaths throughout the world. The previous two decades have witnessed a combined endeavor across various biological sciences to address this issue in novel ways. The advent of recombinant DNA technologies has provided the tools for producing recombinant proteins that can be used as therapeutic agents. A number of expression systems have been developed for the production of pharmaceutical products. Recently, advances have been made using plants as bioreactors to produce therapeutic proteins directed against infectious diseases and cancers. This review highlights the recent progress in therapeutic protein expression in plants (stable and transient), the factors affecting heterologous protein expression, vector systems and recent developments in existing technologies and steps towards the industrial production of plant-made vaccines, antibodies, and biopharmaceuticals.

Keywords

Antibodies Bacterial cells Biopharmaceuticals Mammalian cells Protein expression Vaccines 

Notes

Acknowledgments

We thank the Key Technology Program R & D of China (project no. 2012BAD04B12) and MOA Special Fund for Agro-Scientific Research in the Public Interest of China (no. 201103003) for funding.

References

  1. Azhakanandam K, Weissinger SM, Nicholson JS, Qu R, Weissinger AK (2007) Amplicon-plus targeting technology (APTT) for rapid production of a highly unstable vaccine protein in tobacco plants. Plant Mol Biol 63:393–404PubMedGoogle Scholar
  2. Bendich AJ (1987) Why do chloroplasts and mitochondria contain so many copies of their genome? BioEssays 6:279–282PubMedGoogle Scholar
  3. Boothe J, Nykiforuk C, Shen Y, Zaplachinski S, Szarka S, Kuhlman P, Murray E, Morck D, Moloney MM (2010) Seed-based expression systems for plant molecular farming. Plant Biotechnol J 8:588–606PubMedGoogle Scholar
  4. Broothaerts W, Mitchell HJ, Weir B, Kaines S, Smith LMA, Yang W, Maye JE, Roa-Rodríguez C, Jefferson RA (2005) Gene transfer to plants by diverse species of bacteria. Nature 433:629–633PubMedGoogle Scholar
  5. Buchmann RC, Asad S, Wolf JN, Mohannath G, Bisaro DM (2009) Geminivirus AL2 and L2 proteins suppress transcriptional gene silencing and cause genome-wide reductions in cytosine methylation. J Virol 83:5005–5013PubMedCentralPubMedGoogle Scholar
  6. Canizares MC, Nicholson L, Lomonossoff GP (2005) Use of viral vectors for vaccine production in plants. Immunol Cell Biol 83:263–270PubMedGoogle Scholar
  7. Cerovska N, Hoffmeisterova H, Moravec T, Plchova H, Folwarczna J, Synkova H, Ryslava H, Ludvikova V, Smahel M (2012) Transient expression of Human papilloma virus type 16 L2 epitope fused to N- and C-terminus of coat protein of Potato virus X in plants. J Biosci 37:125–133PubMedGoogle Scholar
  8. Chebolu S, Daniell H (2009) Chloroplast-derived vaccine antigens and biopharmaceuticals: expression, folding, assembly and functionality. Curr Top Microbiol 332:33–54Google Scholar
  9. Chichester JA, Jones RM, Green BJ, Stow M, Miao F, Moonsammy G, Streatfield SJ, Yusibov V (2012) Safety and immunogenicity of a plant-produced recombinant hemagglutinin-based influenza vaccine (HAI-05) derived from A/Indonesia/05/2005 (H5N1) influenza virus: a phase 1 randomized, double-blind, placebo-controlled, dose-escalation study in healthy adults. Viruses 4:3227–3244PubMedCentralPubMedGoogle Scholar
  10. Clinical trials for autologous vaccine for follicular lymphoma (2014) clinicaltrials.gov/ct2/show/NCT01022255. Accessed 26 June 2014Google Scholar
  11. D’Aoust MA, Lavoie PO, Couture MM, Trépanier S, Guay JM, Dargis M, Mongrand S, Landry N, Ward BJ, Vézina LP (2008) Influenza virus-like particles produced by transient expression in Nicotiana benthamiana induce a protective immune response against a lethal viral challenge in mice. Plant Biotechnol J 6:930–940PubMedGoogle Scholar
  12. Daniell H, Datta R, Varma S, Gray S, Lee SB (1998) Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat Biotechnol 16:345–348PubMedGoogle Scholar
  13. Davoodi-Semiromi A, Schreiber M, Nalapalli S, Verma D, Singh ND, Banks RK, Chakrabarti D, Daniell H (2010) Chloroplast-derived vaccine antigens confer dual immunity against cholera and malaria by oral or injectable delivery. Plant Biotechnol J 8:223–242PubMedCentralPubMedGoogle Scholar
  14. Fahad S, Nie L, Khan FA, Chen Y, Hussain S, Wu C et al (2014) Disease resistance in rice and the role of molecular breeding in protecting rice crops against diseases. Biotechnol Lett. doi: 10.1007/s10529-014-1510-9 Google Scholar
  15. Gilbert CL, Klopfer SO, Martin JC, Schödel FP, Bhuyan PK (2012) Safety and immunogenicity of a modified process hepatitis B vaccine in healthy adults >50 years. Hum Vaccine 7:1336–1342Google Scholar
  16. Gleba Y, Klimyuk V, Marillonnet S (2005) Magnifection: a new platform for expressing recombinant vaccines in plants. Vaccine 23:2042–2048PubMedGoogle Scholar
  17. Goeddel DV et al (1979) Expression in Escherichia coli of chemically synthesized genes for human insulin. Proc Natl Acad Sci USA 76:106–110PubMedCentralPubMedGoogle Scholar
  18. Gorantala J, Grover S, Goel D, Rahi A, Jayadev Magani SK, Chandra S, Bhatnagar R (2011) A plant based protective antigen [PA(dIV)] vaccine expressed in chloroplasts demonstrates protective immunity in mice against anthrax. Vaccine 29:4521–4533PubMedGoogle Scholar
  19. Gunn KS, Singh N, Giambrone J, Wu H (2012) Using transgenic plants as bioreactors to produce edible vaccines. J Biotechnol Res 4:92–99Google Scholar
  20. Hagemann R (2004) The sexual inheritance of plant organelles. In: Daniell H, Chase C (eds) Molecular biology and biotechnology of plant organelles. Springer, Netherlands, pp 93–113Google Scholar
  21. Haq TA, Mason HS, Clements JD, Arntzen CJ (1995) Oral immunization with a recombinant bacterial antigen produced in transgenic plants. Science 268:714–716PubMedGoogle Scholar
  22. Haynes JR, Cunningham J, Seefried AV, Lennick M, Garvin RT, Shen S (1986) Development of a genetically-engineered, candidate polio vaccine employing the self-assembling properties of the tobacco mosaic virus coat protein. Nat Biotechnol 4:637–641Google Scholar
  23. Hefferon KL (2012) Recent advances in virus expression vector strategies for vaccine production in plants. Virol Mycol 1:105–124Google Scholar
  24. Hiatt A, Cafferkey R, Bowdish K (1989) Production of antibodies in transgenic plants. Nature 342:76–78PubMedGoogle Scholar
  25. Hiroi T, Takaiwa F (2006) Peptide immunotherapy for allergic diseases using a rice-based edible vaccine. Curr Opin Allergy Clin Immunol 6:455–460PubMedGoogle Scholar
  26. Horsch RB, Fry JE, Hoffmann NL, Eicholz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231Google Scholar
  27. Houdebine LM (2009) Production of pharmaceutical proteins by transgenic animals. Comp Immunol Microbiol Infect Dis 32:107–121PubMedGoogle Scholar
  28. Huang Z, Chen Q, Hjelm B, Arntzen C, Mason H (2009) A DNA replicon system for rapid high-level production of virus-like particles in plants. Biotechnol Bioeng 103:706–714PubMedCentralPubMedGoogle Scholar
  29. Human insulin receives FDA approval (1982) FDA. Drug Bull 12:18-19Google Scholar
  30. Hwang MS, Lindenmut BE, McDonald KA, Falk BW (2012) Bipartite and tripartite cucumber mosaic virus-based vectors for producing the Acidothermus cellulolyticusendo-1,4-β-glucanase and other proteins in non-transgenic plants. BMC Biotechnol 12:66PubMedCentralPubMedGoogle Scholar
  31. Itakura K, Hirose T, Crea R, Riggs AD, Heyneker HL, Bolivar F, Boyer HW (1977) Expression in Escherichia coli of a chemically synthesized gene for the hormone somatostatin. Science 198:1056–1063PubMedGoogle Scholar
  32. Joensuu JJ, Conley AJ, Lienemann M, Brandle JE, Linder MB, Menassa R (2009) Hydrophobin fusions for high-level transient protein expression and purification in Nicotiana benthamiana. Plant Physiol 152:622–633PubMedGoogle Scholar
  33. Kagale S, Uzuhashi S, Wigness M, Bender T, Yang W, Borhan MH, Rozwadowski K (2012) TMV-gate vectors: gateway compatible tobacco mosaic virus based expression vectors for functional analysis of proteins. Sci Rep 2:874PubMedCentralPubMedGoogle Scholar
  34. Kanagarajan S, Tolf C, Lundgren A, Waldenström J, Brodelius PE (2012) Transient expression of hemagglutinin antigen from low pathogenic avian influenza A (H7N7) in Nicotiana benthamiana. PLoS ONE 7:e33010PubMedCentralPubMedGoogle Scholar
  35. Kanoria S, Burma PK (2012) A 28 nt long synthetic 5′UTR (synJ) as an enhancer of transgene expression in dicotyledonous plants. BMC Biotechnol 12:1472–6750Google Scholar
  36. Kapila J, DeRycke R, Van Montagu M, Angenon G (1997) An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci 122:101Google Scholar
  37. Kittiwongwattana C, Lutz K, Clark M, Maliga P (2007) Plastid marker gene excision by the phiC31 phage site-specific recombinase. Plant Mol Biol 64:137–143PubMedGoogle Scholar
  38. Kohl TO, Hitzeroth II, Christensen ND, Rybicki EP (2007) Expression of HPV-11 L1 protein in transgenic Arabidopsis thaliana and Nicotiana tabacum. BMC Biotechnol 7:56PubMedCentralPubMedGoogle Scholar
  39. Kolotilin I, Kaldis A, Devriendt B, Joensuu J, Cox E, Menassa R (2012) Production of a subunit vaccine candidate against porcine post-weaning diarrhea in high-biomass transplastomic tobacco. PLoS ONE 7:e42405PubMedCentralPubMedGoogle Scholar
  40. Komarova TV, Baschieri S, Donini M, Marusic C, Benvenuto E, Dorokhov YL (2010) Transient expression systems for plant-derived biopharmaceuticals. Exp Rev Vaccines 9:859–876Google Scholar
  41. Kon T, Sharma P, Ikegami M (2007) Suppressor of RNA silencing encoded by the monopartite tomato leaf curl Java begomovirus. Arch Virol 152:1273–1282PubMedGoogle Scholar
  42. Koya V, Moayeri M, Leppla SH, Daniell H (2005) Plant-based vaccine: mice immunized with chloroplast-derived anthrax protective antigen survive anthrax lethal, toxin challenge. Infect Immun 73:8266–8274PubMedCentralPubMedGoogle Scholar
  43. Laanger E (2011) New plant expression systems drive vaccine innovation and opportunity. BioProcess Int 9:16–20Google Scholar
  44. Laguía-Becher M, Martín V, Kraemer M, Corigliano M, Yacono ML, Goldman A, Clemente M (2010) Effect of codon optimization and subcellular targeting on Toxoplasma gondii antigen SAG1 expression in tobacco leaves to use in subcutaneous and oral immunization in mice. BMC Biotechnol 10:52PubMedCentralPubMedGoogle Scholar
  45. Landry N, Ward BJ, Trépanier S, Montomoli E, Dargis M, Lapini G, Vézina LP (2010) Preclinical and clinical development of plant-made virus-like particle vaccine against avian H5N1 influenza. PLoS One 5:0015559Google Scholar
  46. Larsen JS, Curtis WR (2012) RNA viral vectors for improved Agrobacterium-mediated transient expression of heterologous proteins in Nicotiana benthamiana cell suspensions and hairy roots. BMC Biotechnol 12:21PubMedCentralPubMedGoogle Scholar
  47. Lico C, Chen Q, Santi L (2008) Viral vectors for production of recombinant proteins in plants. J Cell Physiol 216:366–377PubMedGoogle Scholar
  48. Lindbo JA (2007a) High-efficiency protein expression in plants from agroinfection: compatible tobacco mosaic virus expression vectors. BMC Biotechnol 7:52PubMedCentralPubMedGoogle Scholar
  49. Lindbo JA (2007b) TRBO: a high-efficiency tobacco mosaic virus rna-based overexpression Vector. Plant Physiol 145:1161–1170Google Scholar
  50. Liu W, Yuan JS, Stewart CN Jr (2013) Advanced genetic tools for plant biotechnology. Nat Rev Genet 14:781–793PubMedGoogle Scholar
  51. Lossl AG, Waheed MT (2011) Chloroplast-derived vaccines against human diseases: achievements, challenges and scopes. Plant Biotechnol J 9:527–539PubMedGoogle Scholar
  52. Ma C, Wang L, Webster DE, Campbell AE, Coppel RL (2012a) Production, characterization and immunogenicity of a plant-made plasmodium antigen-the 19 kDa C-terminal fragment of plasmodium yoelii merozoite surface protein 1. Appl Microbiol Biotechnol 94:151–161PubMedGoogle Scholar
  53. Ma M, Yan Y, Huang L, Chen M, Zhao H (2012b) Virus-induced gene-silencing in wheat spikes and grains and its application in functional analysis of HMW-GS-encoding genes. BMC Plant Biol 12:141PubMedCentralPubMedGoogle Scholar
  54. Maldaner FR, Aragão FJL, dos Santos FB, Franco OL, Lima MdRQ, de Oliveira Resende R, Vasques RM, Nagata T (2013) Dengue virus tetra epitope peptide expressed in lettuce chloroplasts for potential use in dengue diagnosis. Appl Microbiol Biotechnol 97:5721–5729PubMedGoogle Scholar
  55. Maliga P (2004) Plastid transformation in higher plants. Annu Rev Plant Biol 55:289–313PubMedGoogle Scholar
  56. Marillonnet S, Giritch A, Gils M, Kandzia R, Klimyuk V, Gleba Y (2004) In planta engineering of viral RNA replicons: efficient assembly by recombination of DNA modules delivered by Agrobacterium. Proc Natl Acad Sci USA 101:6852–6857PubMedCentralPubMedGoogle Scholar
  57. Marillonnet S, Thoeringer C, Kandzia R, Klimyuk V, Gleba Y (2005) Systemic Agrobacterium tumefaciens-mediated transfection of viral replicons for efficient transient expression in plants. Nat Biotech 23:718–723Google Scholar
  58. Martínez de Alba AE, Elvira-Matelot E, Vaucheret H (2013) Gene silencing in plants: a diversity of pathways. Biochim Biophys Acta 1829:1300–1308PubMedGoogle Scholar
  59. Mason HS, Lam DM, Arntzen CJ (1992) Expression of hepatitis B surface antigen in transgenic plants. Proc Natl Acad Sci USA 89:11745–11749PubMedCentralPubMedGoogle Scholar
  60. Mason HS, Haq TA, Clements JD, Arntzen CJ (1998) Edible vaccine protects mice against Escherichia coli heat-labile enterotoxin (LT): potatoes expressing a synthetic LT-B gene. Vaccine 16:1336–1343PubMedGoogle Scholar
  61. Matsui T, Matsuura H, Sawada K, Takita E, Kinjo S, Takenami S, Ueda K, Nishigaki N, Yamasaki S, Hata K, Yamaguchi M, Demura T, Kato K (2012) High level expression of transgenes by use of 5′-untranslated region of the Arabidopsis thaliana arabinogalactan-protein 21 gene in dicotyledons. Plant Biotechnol J 29:319–322Google Scholar
  62. McCormick AA, Reddy S, Reinl SJ, Cameron TI, Czerwinkski DK, Vojdani F, Hanley KM, Garger SJ, White EL, Novak J, Barrett J, Holtz RB, Tusé D, Levy R (2008) Plant-produced idiotype vaccines for the treatment of non-Hodgkin’s lymphoma: safety and immunogenicity in a phase I clinical study. Proc Natl Acad Sci USA 105:10131–10136PubMedCentralPubMedGoogle Scholar
  63. Merlin M, Gecchele E, Capaldi S, Pezzotti M, Avesani L (2014) Comparative evaluation of recombinant protein production in different biofactories: the green perspective. BioMed Res Intern 2014:14. doi: 10.1155/2014/136419 Google Scholar
  64. Miller T, Fanton M, Webb S (2004) Transforming tobacco cell line containing sequences encoding antigens (such as hemagglutinin/neuraminidase protein from Newcastle Disease Virus), culturing, washing, suspending in lysis buffer, disrupting cells, then separating debris; vaccines. US Patent 0268442A1Google Scholar
  65. Mishra N, Gupta PN, Khatri K, Goyal AK, Vyas SP (2008) Edible vaccine: a new approach to oral immunization. Indian J Biotechnol 7:283–294Google Scholar
  66. Modelska A, Dietzschold B, Sleysh N, Fu ZF, Steplewski K, Hooper DC, Koprowski H, Yusibov V (1998) Immunization against rabies with plant-derived antigen. Proc Natl Acad Sci USA 95:2481–2485PubMedCentralPubMedGoogle Scholar
  67. Moravec T, Schmidt MA, Herman EM, Woodford-Thomas T (2007) Production of Escherichia coli heat labile toxin (LT) B subunit in soybean seed and analysis of its immunogenicity as an oral vaccine. Vaccine 25:1647–1657PubMedGoogle Scholar
  68. Mortimer E, Maclean JM, Mbewana S, Buys A, Williamson AL, Hitzeroth II, Rybicki EP (2012) Setting up a platform for plant-based influenza virus vaccine production in South Africa. BMC Biotechnol 12:14PubMedCentralPubMedGoogle Scholar
  69. Nochi T, Takagi H, Yuki Y, Yang L, Masumura T, Mejima M, Nakanishi U, Matsumura A, Uozumi A, Hiroi T, Morita S, Tanaka K, Takaiwa F, Kiyono H (2007) Rice-based mucosal vaccine as a global strategy for cold-chain and needle-free vaccination. Proc Natl Acad Sci USA 104:10986–10991PubMedCentralPubMedGoogle Scholar
  70. Nuzzaci M, Piazzolla G, Vitti A, Lapelosa M, Tortorella C, Stella I, Natilla A, Antonaci S, Piazzolla P (2007) Cucumber mosaic virus as a presentation system for a double hepatitis C virus-derived epitope. Arch Virol 152:915–928PubMedGoogle Scholar
  71. Nuzzaci M, Bochicchio I, De Stradis A, Vitti A, Natilla A, Piazzolla P, Tamburro AM (2009) Structural and biological properties of cucumber mosaic virus particles carrying hepatitis C virus-derived epitopes. J Virol Methods 155:118–121PubMedGoogle Scholar
  72. Nuzzaci M, Vitti A, Condelli V, Lanorte MT, Tortorella C, Boscia D, Piazzolla P, Piazzolla G (2010) In vitro stability of cucumber mosaic virus nanoparticles carrying a Hepatitis C virus-derived epitope under simulated gastrointestinal conditions and in vivo efficacy of an edible vaccine. J Virol Methods 165:211–215PubMedGoogle Scholar
  73. Peyret H, Lomonossoff GP (2013) The pEAQ vector series: the easy and quick way to produce recombinant proteins in plants. Plant Mol Biol 83:51–58PubMedGoogle Scholar
  74. Pillai O, Panchagnula R (2001) Insulin therapies-past, present and future. Drug Discov Today 6:1056–1061PubMedGoogle Scholar
  75. Pniewski T, Kapusta J, Bociąg P, Wojciechowicz J, Kostrzak A, Gdula M, Fedorowicz-Strońska O, Wójcik P, Otta H, Samardakiewicz S, Wolko B, Płucienniczak A (2011) Low-dose oral immunization with lyophilized tissue of herbicide-resistant lettuce expressing hepatitis B surface antigen for prototype plant-derived vaccine tablet formulation. J Appl Genet 52:125–136PubMedCentralPubMedGoogle Scholar
  76. Pogrebnyak N, Markley K, Smirnov Y, Brodzik R, Bandurska K, Koprowski H, Golovkin M (2006) Collard and cauliflower as a base for production of recombinant antigens. Plant Sci 171:677–685Google Scholar
  77. Pogue GP, Holzberg S (2012) Transient virus expression systems for recombinant protein expression in dicot- and monocotyledonous plants. In: Dhal NK. (Ed.) Plant Science, ISBN: 978-953-51-0905-1, InTech. doi:  10.5772/54187
  78. Quesada-Vargas T, Ruiz ON, Daniell H (2005) Characterization of heterologous multigene operons in transgenic chloroplasts: transcription, processing, and translation. Plant Physiol 138:1746–1762PubMedCentralPubMedGoogle Scholar
  79. Rader RA (2013) FDA biopharmaceutical product approvals and trends in 2012. BioProcess Int 11:18–27Google Scholar
  80. Rigano MM, Guzman GD, Walmsley AM, Frusciante L, Barone A (2013) Production of pharmaceutical proteins in solanaceae food crops. Int J Mol Sci 14:2753–2773PubMedCentralPubMedGoogle Scholar
  81. Rosales-Mendoza S, Soria-Guerra RE, López-Revilla R, Moreno-Fierros L, Alpuche-Solís AG (2008) Ingestion of transgenic carrots expressing the Escherichia coli heat-labile enterotoxin B subunit protects mice against cholera toxin challenge. Plant Cell Rep 27:79–84PubMedGoogle Scholar
  82. Rosenberg Y, Sack M, Montefiori D, Forthal D, Mao L, Hernandez-Abanto S, Urban L, Landucci G, Fischer R, Jianget X (2012) Rapid High-level production of functional hiv broadly neutralizing monoclonal antibodies in transient plant expression systems. PLoS One 8(3):e58724. doi: 10.1371/journal.pone.0058724 Google Scholar
  83. Rubio-Infante N, Govea-Alonso DO, Alpuche-Solís AG, García-Hernández AL, Soria-Guerra RE, Paz-Maldonado LMT, Ilhuicatzi-Alvarado D, Varona-Santos JT, Verdín-Terán L, Korban SS, Moreno-Fierros L, Rosales-Mendoza S (2012) A chloroplast-derived C4V3 polypeptide from the human immunodeficiency virus (HIV) is orally immunogenic in mice. Plant Mol Biol 78:337–349PubMedGoogle Scholar
  84. Ruf S, Karcher D, Bock R (2007) Determining the transgene containment level provided by chloroplast transformation. Proc Natl Acad Sci USA 104:6998–7002PubMedCentralPubMedGoogle Scholar
  85. Sainsbury F, Lomonossoff GP (2008) Extremely high-level and rapid transient protein production in plants without the use of viral replication. Plant Physiol 148:1212–1218PubMedCentralPubMedGoogle Scholar
  86. Sainsbury F, Lomonossoff GP (2014) Transient expressions of synthetic biology in plants. Curr Opin Plant Biol 19:1–7. doi: 10.1016/j.pbi.2014.02.003 PubMedCentralPubMedGoogle Scholar
  87. Sasaki S, Yamagishi N, Yoshikawa N (2011) Efficient virus-induced gene silencing in apple, pear and Japanese pear using Apple latent spherical virus vectors. Plant Methods 7:15PubMedCentralPubMedGoogle Scholar
  88. Sempere RN, Gómez P, Truniger V, Aranda MA (2011) Development of expression vectors based on pepino mosaic virus. Plant Methods 7:6PubMedCentralPubMedGoogle Scholar
  89. Shin YJ, Kwon TH, Seo JY, Kim TJ (2013) Oral immunization of fish against iridovirus infection using recombinant antigen produced from rice callus. Vaccine 31:5210–5215PubMedGoogle Scholar
  90. Shoji Y, Chichester JA, Jones M, Manceva SD, Damon E, Mett V, Musiychuk K, Bi H, Farrance C, Shamloul M, Kushnir N, Sharma S, Yusibov V (2011) Plant-based rapid production of recombinant subunit hemagglutinin vaccines targeting H1N1 and H5N1 influenza. Hum Vaccine 7:41–50Google Scholar
  91. Soria-Guerra RE, Rosales-Mendoza S, Márquez-Mercado C, López-Revilla R, Castillo-Collazo R, Alpuche-Solís AG (2007) Transgenic tomatoes express an antigenic polypeptide containing epitopes of the diphtheria, pertussis and tetanus exotoxins, encoded by a synthetic gene. Plant Cell Rep 26:961–968PubMedGoogle Scholar
  92. Soria-Guerra RE, Rosales-Mendoza S, Moreno-Fierros L, López-Revilla R, Alpuche-Solís AG (2011) Oral immunogenicity of tomato-derived sDPT polypeptide containing Corynebacterium diphtheriae, Bordetella pertussis and Clostridium tetaniexotoxin epitopes. Plant Cell Rep 30:417–424PubMedGoogle Scholar
  93. Svab Z, Maliga P (2007) Exceptional transmission of plastids and mitochondria from the transplastomic pollen parent and its impact on transgene containment. Proc Natl Acad Sci USA 104:7003–7008PubMedCentralPubMedGoogle Scholar
  94. Tiwari S, Verma PC, Singh PK, Tuli R (2009) Plants as bioreactors for the production of vaccine antigens. Biotechnol Adv 27:449–467PubMedGoogle Scholar
  95. Tokuhara D et al (2013) Rice-based oral antibody fragment prophylaxis and therapy against rotavirus infection. J Clin Invest 123:3829–3838PubMedCentralPubMedGoogle Scholar
  96. Treanor JJ, El Sahly H, King J, Graham I, Izikson R, Kohberger R, Patriarca P, Cox M (2011) Protective efficacy of a trivalent recombinant hemagglutinin protein vaccine [FluBlok(R)] against influenza in healthy adults: a randomized, placebo-controlled trial. Vaccine 29:7733–7739PubMedGoogle Scholar
  97. Tregoning JS, Clare S, Bowe F, Edwards F, Fairweather N, Qazi O, Nixon PJ, Maliga P, Dougan G, Hussell T (2005) Protection against tetanus toxin using a plant-based vaccine. Eur J Immunol 35:1320–1326PubMedGoogle Scholar
  98. Turpen TH, Reini SJ, Charoenvit Y, Hoffman SL, Fallarme V, Grill LK (1995) Malarial epitopes expressed on the surface of recombinant tobacco mosaic virus. Nat Biotechnol 13:53–57Google Scholar
  99. Verma D, Daniell H (2007) Chloroplast vector systems for biotechnology applications. Plant Physiol 145:1129–1143PubMedCentralPubMedGoogle Scholar
  100. Waheed MT, Gottschamel J, Hassan SW, Lösslet AG (2012) Plant-derived vaccines: an approach for affordable vaccines against cervical cancer. Hum Vaccines Immunotherap 8:403–406Google Scholar
  101. Wang HH, Yin WB, Hu ZM (2009) Advances in chloroplast engineering. J Genet Genomics 36:387–398PubMedGoogle Scholar
  102. Yamagishi N, Yoshikawa N (2009) Virus-induced gene silencing in soybean seeds and the emergence stage of soybean plants with apple latent spherical virus vectors. Plant Mol Biol 71:15–24PubMedGoogle Scholar
  103. Yang TG, Yang MS (2010) Current trends in edible vaccine development using transgenic plants. Biotechnol Bioprocess Eng 15:61–65Google Scholar
  104. Yang Y, Li X, Yang H, Qian Y, Zhang Y, Fang R, Chen X (2011) Immunogenicity and virus-like particle formation of rotavirus capsid proteins produced in transgenic plants. Sci China Life Sci 54:82–89PubMedGoogle Scholar
  105. Yang H, Gray BN, Ahner BA, Hanson MR (2013) Bacteriophage 5′ untranslated regions for control of plastid transgene expression. Planta 237:517–527PubMedGoogle Scholar
  106. Yuki Y et al (2013) Induction of toxin-specific neutralizing immunity by molecularly uniform rice-based oral cholera toxin B subunit vaccine without plant-associated sugar modification. Plant Biotechnol J 11:799–808PubMedGoogle Scholar
  107. Yusibov V, Streatfield SJ, Kushnir N (2011) Clinical development of plant-produced recombinant pharmaceuticals: vaccines, antibodies and beyond. Hum Vaccine 7(3):313–321Google Scholar
  108. Zhou YX, Lee MY, Ng JM, Chye ML, Yip WK, Zee SY, Lam E (2006) A truncated hepatitis E virus ORF2 protein expressed in tobacco plastids is immunogenic in mice. World J Gastroenterol 12:306–312PubMedCentralPubMedGoogle Scholar
  109. Zorrilla-Lopez U, Masip G, Arj´o G, Bai C, Banakar R et al (2013) Engineering metabolic pathways in plants by multigene transformation. Int J Dev Biol 57:565–576PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Shah Fahad
    • 1
  • Faheem Ahmed Khan
    • 2
    • 3
  • Nuruliarizki Shinta Pandupuspitasari
    • 3
  • Muhammad Mahmood Ahmed
    • 4
  • Yu Cai Liao
    • 4
  • Muhammad Tahir Waheed
    • 5
  • Muhammad Sameeullah
    • 8
  • Darkhshan
    • 9
  • Saddam Hussain
    • 1
  • Shah Saud
    • 6
  • Shah Hassan
    • 7
  • Amanullah Jan
    • 7
  • Mohammad Tariq Jan
    • 7
  • Chao Wu
    • 1
  • Ma Xiao Chun
    • 1
  • Jianliang Huang
    • 1
  1. 1.National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
  2. 2.Molecular Biotechnology Laboratory for Triticeae CropsHuazhong Agricultural UniversityWuhanChina
  3. 3.Key Laboratory of Agricultural Animal Genetics, Breeding and ReproductionHuazhong Agricultural UniversityWuhanChina
  4. 4.College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
  5. 5.Department of BiochemistryQuaid-I-Azam UniversityIslamabadPakistan
  6. 6.Department of HorticulturalNortheast Agricultural UniversityHarbinChina
  7. 7.Agriculture UniversityPeshawarPakistan
  8. 8.Biotechnology Lab., Department of Biology, Faculty of Science and ArtsAbant Izzet Baysal UniversityBoluTurkey
  9. 9.Women Institute of LearningAbbottabadPakistan

Personalised recommendations