Skip to main content
Log in

Sequencing technologies for animal cell culture research

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Over the last 10 years, 2nd and 3rd generation sequencing technologies have made the use of genomic sequencing within the animal cell culture community increasingly commonplace. Each technology’s defining characteristics are unique, including the cost, time, sequence read length, daily throughput, and occurrence of sequence errors. Given each sequencing technology’s intrinsic advantages and disadvantages, the optimal technology for a given experiment depends on the particular experiment’s objective. This review discusses the current characteristics of six next-generation sequencing technologies, compares the differences between them, and characterizes their relevance to the animal cell culture community. These technologies are continually improving, as evidenced by the recent achievement of the field’s benchmark goal: sequencing a human genome for less than $1,000.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ansorge WJ (2009) Next-generation DNA sequencing techniques. New Biotechnol 25:195–203

    Article  CAS  Google Scholar 

  • Au KF, Sebastiano V, Afshar PT, Durruthy JD, Lee L, Williams BA, van Bakel H, Schadt EE, Reijo-Pera RA, Underwood JG, Wong WH (2013) Characterization of the human ESC transcriptome by hybrid sequencing. Proc Natl Acad Sci USA 110:E4821–E4830

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baker M (2010) Nanotechnology imaging probes: smaller and more stable. Nat Methods 7:957–962

    Article  CAS  Google Scholar 

  • Becker J, Hackl M, Rupp O, Jakobi T, Schneider J, Szczepanowski R, Bekel T, Borth N, Goesmann A, Grillari J, Kaltschmidt C, Noll T, Puhler A, Tauch A, Brinkrolf K (2011) Unraveling the Chinese hamster ovary cell line transcriptome by next-generation sequencing. J Biotechnol 156:227–235

    Article  CAS  PubMed  Google Scholar 

  • Bennett S (2004) Solexa ltd. Pharmacogenomics 5:433–438

    Article  PubMed  Google Scholar 

  • BioIT World (2014) Illumina announces the thousand dollar genome. Bio-IT World

  • Boland JF, Chung CC, Roberson D, Mitchell J, Zhang X, Im KM, He J, Chanock SJ, Yeager M, Dean M (2013) The new sequencer on the block: comparison of Life Technology’s Proton sequencer to an Illumina HiSeq for whole-exome sequencing. Hum Genet 132:1153–1163

    Article  CAS  PubMed  Google Scholar 

  • Brinkrolf K, Rupp O, Laux H, Kollin F, Ernst W, Linke B, Kofler R, Romand S, Hesse F, Budach WE, Galosy S, Müller D, Noll T, Wienberg J, Jostock T, Leonard M, Grillari J, Tauch A, Goesmann A, Helk B, Mott JE, Puhler A, Borth N (2013) Chinese hamster genome sequenced from sorted chromosomes. Nat Biotechnol 31:694–695

    Article  CAS  PubMed  Google Scholar 

  • Carneiro MO, Russ C, Ross MG, Gabriel SB, Nusbaum C, DePristo MA (2012) Pacific biosciences sequencing technology for genotyping and variation and discovery in human data. BMC Genom 13:375–382

    Article  CAS  Google Scholar 

  • Cervera L, Gutierrez-Granados S, Martinez M, Blanco J, Godia F, Segura MM (2013) Generation of HIV-1 Gag VLPs by transient transfection of HEK 293 suspension cell culture using an optimized animal-derived component free medium. J Biotechnol 166:152–165

    Article  CAS  PubMed  Google Scholar 

  • Clarke J, Wu HC, Jayasinghe L, Patel A, Reid S, Bayley H (2009) Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol 4:265–270

    Article  CAS  PubMed  Google Scholar 

  • Damerla RR, Chatterjee B, Li Y, Francis RJB, Fatakia SN, Lo CW (2014) Ion Torrent sequencing for conducting genome-wide scans for mutation mapping analysis. Mamm Genome 25:120–128

    Article  CAS  PubMed  Google Scholar 

  • Everett MV, Grau ED, Seeb JE (2011) Short reads and nonmodel species: exploring the complexities of next-generation sequence assembly and SNP discovery in the absence of a reference genome. Mol Ecol Resour 11:93–108

    Article  PubMed  Google Scholar 

  • Flosberg BA, Webster DR, Lee JH, Travers KJ, Olivares EC, Clark TA, Korlach J, Turner SW (2010) Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods 7:461–465

    Article  Google Scholar 

  • Galan M, Guivier E, Caraux G, Charbonnel N, Cosson JF (2010) A 454 multiplex sequencing method for rapid and reliable genotyping of highly polymorphic genes in large-scale studies. BMC Genom 11:296

    Article  Google Scholar 

  • Glenn TC (2011) Field guide to next-generation DNA sequencers. Mol Ecol Resour 11:759–769

    Article  CAS  PubMed  Google Scholar 

  • Hackl M, Jakobi T, Blom J, Doppmeier D, Brinkrolf K, Szczepanowski R, Bernhart SH, Höner Zu, Siederdissen C, Bort JAH, Wieser M, Kunert R, Jeffs S, Hofacker IL, Goesmann A, Puhler A, Borth N, Grillari J (2011) Next-generation sequencing of the Chinese hamster ovary microRNA transcriptome: identification, annotation and profiling of microRNAs as targets for cellular engineering. J Biotechnol 153:62–75

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hammond S, Swanberg FC, Kaplarevic M, Lee KH (2011) Genomic sequencing and analysis of a Chinese hamster ovary cell line using Illumina sequencing technology. BMC Genom 12:67–74

    Article  CAS  Google Scholar 

  • Hoffman JI, Tucker R, Bridgett SF, Clark MS, Forcada J, Slate J (2012) Rates of assay success and genotyping error when single nucleotide polymorphism genotyping in non-model organisms: a case study in the Antarctic fur seal. Mol Ecol Resour 12:861–872

    Article  CAS  PubMed  Google Scholar 

  • Johnson KC, Yongky A, Vishwanathan N, Jacob NM, Jayapal KP, Goudar CT, Karypis G, Hu WS (2014) Exploring the transcriptome space of a recombinant BHK cell line through next generation sequencing. Biotechnol Bioeng 111:770–781

    Article  CAS  PubMed  Google Scholar 

  • Kantardjieff A, Nissom PM, Chuah SH, Yusufi F, Jacob N, Mulukutla BC, Yap M, Hu WS (2009) Developing genomic platforms for Chinese hamster ovary cells. Biotechnol Adv 27:1028–1035

    Article  CAS  PubMed  Google Scholar 

  • Keohavong P, Thilly WG (1989) Fidelity of DNA polymerases in DNA amplification. Proc Natl Acad Sci USA 86:9253–9257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koren S, Schatz MC, Walenz BP, Martin J, Howard JT, Ganapathy G, Wang Z, Rasko DA, McCombie WR, Jarvis ED, Phillippy AM (2012) Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat Biotechnol 30:693–700

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Korlach J, Bjornson KP, Chaudhuri BP, Cicero RL, Flusberg BA, Gray JJ, Holden D, Saxena R, Wegener J, Turner SW (2010) Real-time DNA sequencing from single molecule polymerase molecules. Method Enzymol 472:431–455

    Article  CAS  Google Scholar 

  • Kowalczyk SW, Wells DB, Aksimentiev A, Dekker C (2012) Slowing down DNA translocation through a nanopore in lithium chloride. Nano Lett 12:1038–1044

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kremkow B, Lee KH (2013) Next-generation sequencing technologies and their potential impact on CHO cell-based biomanufacturing. Pharm Bioproc 1:455–465

    Article  Google Scholar 

  • Krol A (2014) What you need to know about Illumina’s new sequencers. Bio-IT World

  • Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  CAS  PubMed  Google Scholar 

  • Lemay MA, Henry P, Lamb CT, Robson KM, Russello MA (2013) Novel genomic resources for a climate change sensitive mammal: characterization of the American pika transcriptome. BMC Genom 14:311

    Article  CAS  Google Scholar 

  • Lewis NE, Liu X, Li Y, Nagarajan H, Yerganian G, O’Brien E, Bordbar A, Roth AM, Rosenbloom J, Bian C, Xie M, Chen W, Li N, Baycin-Hizal D, Latif H, Forster J, Betenbaugh MJ, Famili I, Xu X, Wang J, Palsson BO (2013) Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome. Nat Biotechnol 31:759–765

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Li YH, Li SL, Hu N, He Y, Pong R, Lin D, Lu L, Law M (2012) Comparison of next-generation sequencing systems. J Biomed Biotechnol 2012:1–11

    PubMed  Google Scholar 

  • Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev Genom Hum G 9:387–402

    Article  CAS  Google Scholar 

  • McCarthy A (2010) Third generation DNA sequencing: Pacific biosciences’ single molecule real time technology. Chem Biol 17:675–676

    Article  CAS  PubMed  Google Scholar 

  • McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Merriman B, Rothberg JM, Ion Torrent R&D Team (2012) Progress in Ion Torrent semiconductor chip based sequencing. Electrophoresis 33:3397–3417

    Article  CAS  PubMed  Google Scholar 

  • Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev 11:31–46

    Article  CAS  Google Scholar 

  • Naik AD, Menegatti S, Gurgel PV, Carbonell RG (2011) Performance of hexamer peptide ligands for affinity purification immunoglobulin G from commercial cell culture media. J Chromatogr A 1218:1691–1700

    Article  CAS  PubMed  Google Scholar 

  • Picotti P, Aebersold R (2012) Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nat Methods 9:555–566

    Article  CAS  PubMed  Google Scholar 

  • Reinders J, Pasazkowski J (2010) Bisulfite methylation profiling of large genomes. Epigenomics 2:209–220

    Article  CAS  PubMed  Google Scholar 

  • Rhee M, Burns MA (2006) Nanopore sequencing technology: research trends and applications. Trends Biotechnol 24:580–586

    Article  CAS  PubMed  Google Scholar 

  • Ross MG, Russ C, Costello M, Hollinger A, Lennon NJ, Hegarty R, Nusbaum C, Jaffe DB (2013) Characterizing and measuring bias in sequence data. Genome Biol 14:51–70

    Article  Google Scholar 

  • Rothberg JM, Leamon JH (2008) The development and impact of 454 sequencing. Nat Biotechnol 26:1117–1124

    Article  CAS  PubMed  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schadt EE, Turner S, Kasarskis A (2010) A window into third-generation sequencing. Hum Mol Genet 19:R227–R240

    Article  CAS  PubMed  Google Scholar 

  • Scherer WF, Syverton JT, Gey GO (1953) Studies on the propagation invitro of poliomyelitis viruses 4—viral multiplication in a stable strain of human malignant epithelial cells (strain HeLa) derived from an epidermoid carcinoma of the cervix. J Exp Med 97:695–710

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schuster SC (2008) Next-generation sequencing transforms today’s biology. Nat Methods 5:16–18

    Article  CAS  PubMed  Google Scholar 

  • Service RF (2006) Gene sequencing—the race for the $1000 genome. Science 311:1544–1546

    Article  PubMed  Google Scholar 

  • Sharon D, Tilgner H, Grubert F, Snyder M (2013) A single-molecule long-read survey of the human transcriptome. Nat Biotechnol 31:1009–1014

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shaw TI, Srivastava A, Chou WC, Liu L, Hawkinson A, Glenn TC, Adams R, Schountz T (2012) Transcriptome sequencing and annotation for the Jamaican fruit bat (Artibeus jamaicensis). PLoS One 7:1–12

    Google Scholar 

  • Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26:1135–1145

    Article  CAS  PubMed  Google Scholar 

  • Venter JC, Adams MD, Myers EW et al (2001) The sequence of the human genome. Science 291:1304–1351

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Nagarajan H, Lewis NE, Pan S, Cai Z, Liu X, Chen W, Xie M, Wang W, Hammond S, Andersen MR, Neff N, Passarelli B, Koh W, Fan HC, Wang J, Gui Y, Lee KH, Betenbaugh MJ, Quake SR, Famili I, Palsson BO, Wang J (2011) The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line. Nat Biotechnol 29:735–741

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu M, Hu Z, Pacis E, Vijayasankaran N, Shen A, Li F (2011) Understanding the intracellular effect of enhanced nutrient feeding toward high titer antibody production process. Biotechnol Bioeng 108:1078–1088

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful for support from the National Science Foundation under Grant Nos. 1124647 and 1412365, and from the National Institute of Standards and Technology under Grant No. 60NANB11D185.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelvin H. Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kremkow, B.G., Lee, K.H. Sequencing technologies for animal cell culture research. Biotechnol Lett 37, 55–65 (2015). https://doi.org/10.1007/s10529-014-1660-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-014-1660-9

Keywords

Navigation