Biotechnology Letters

, Volume 36, Issue 11, pp 2331–2341 | Cite as

Overexpression of an alfalfa GDP-mannose 3, 5-epimerase gene enhances acid, drought and salt tolerance in transgenic Arabidopsis by increasing ascorbate accumulation

  • Lichao Ma
  • Yanrong Wang
  • Wenxian Liu
  • Zhipeng LiuEmail author
Original Research Paper


GDP-mannose 3′, 5′-epimerase (GME) catalyses the conversion of GDP-d-mannose to GDP-l-galactose, an important step in the ascorbic acid (ascorbic acid) biosynthetic pathway in higher plants. In this study, a novel cDNA fragment (MsGME) encoding a GME protein was isolated and characterised from alfalfa (Medicago sativa). An expression analysis confirmed that MsGME expression was induced by salinity, PEG and acidity stresses. MsGME overexpression in Arabidopsis enhanced tolerance of the transgenic plants to salt, drought and acid. Real-time PCR analysis revealed that the transcript levels of GDP-d-mannose pyrophosphorylase (GMP), l-galactose-phosphate 1-P phosphatase (GP) and GDP-l-galactose phosphorylase (GGP) were increased in transgenic Arabidopsis (T3 generation). Moreover, the ascorbate content was increased in transgenic Arabidopsis. Our results suggest that MsGME can effectively enhance tolerance of transgenic Arabidopsis to acid, drought and salt by increasing ascorbate accumulation.


Acid tolerance Alfalfa Arabidopsis Ascorbic acid Drought tolerance GDP-mannose 3′, 5′-epimerase Salt tolerance Transgenic plants 



This study was supported by the National Basic Research Program of China (2014CB138704) and the National Natural Science Foundation of China (31072072).


  1. Agius F, Gonzclez-Lamothe R, Caballero J, Mu oz-Blanco J, Botella M, Valpuesta V (2003) Engineering increased vitamin C levels in plants by overexpression of a d-galacturonic acid reductase. Nat Biotechnol 21:177–181PubMedCrossRefGoogle Scholar
  2. Bao A, Wang S, Wu G, Xi J, Zhang J, Wang C (2009) Overexpression of the Arabidopsis H+ -PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.). Plant Sci 176:232–240CrossRefGoogle Scholar
  3. Barber G (1975) The synthesis of guanosine 5′-diphosphate-l-galactose by extracts of Chlorella pyrenoidosa. Arch Biochem Biophys 167:718–722PubMedCrossRefGoogle Scholar
  4. Barber G (1979) Observations on the mechanism of the reversible epimerization of GDP-d-mannose to GDP-l-galactose by an enzyme from Chlorella pyrenoidosa. J Biol Chem 254:7600–7603PubMedGoogle Scholar
  5. Chang CCC, Slesak I, Jorda L, Sotnikov A, Melzer M, Miszalski Z, Mullineaux PM, Parker JE, Karpinska B, Karpinski S (2009) Arabidopsis chloroplastic glutathione peroxidases play a role in cross talk between photooxidative stress and immune response. Plant Physiol 150:670–683PubMedCrossRefPubMedCentralGoogle Scholar
  6. Chen Z, Gallie D (2005) Increasing tolerance to ozone by elevating foliar ascorbic acid confers greater protection against ozone than increasing avoidance. Plant Physiol 138:1673–1689PubMedCrossRefPubMedCentralGoogle Scholar
  7. Cho U-H, Park J-O (2000) Mercury-induced oxidative stress in tomato seedlings. Plant Sci 156:1–9PubMedCrossRefGoogle Scholar
  8. Clough S, Bent A (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743PubMedCrossRefGoogle Scholar
  9. Conklin P, Barth C (2004) Ascorbic acid, a familiar small molecule intertwined in the response of plants to ozone, pathogens and the onset of senescence. Plant, Cell Environ 27:959–970CrossRefGoogle Scholar
  10. Conklin P, Williams E, Last R (1996) Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. Proc Natl Acad Sci USA 93:9970–9974PubMedCrossRefPubMedCentralGoogle Scholar
  11. Davey MW, Gilot C, Persiau G, Ostergaard J, Han Y, Bauw GC, Van MMC (1999) Ascorbate biosynthesis in Arabidopsis cell suspension culture. Plant Physiol 121:535–543PubMedCrossRefPubMedCentralGoogle Scholar
  12. Dutilleul C, Garmier M, Noctor G, Mathieu C, Chetrit P, Foyer CH, de Paepe R (2003) Leaf mitochondria modulate whole cell redox homeostasis, set antioxidant capacity, and determine stress resistance through altered signaling and diurnal regulation. Plant Cell 15:1212–1226PubMedCrossRefPubMedCentralGoogle Scholar
  13. Eltayeb A, Kawano N, Badawi G, Kaminaka H, Sanekata T, Shibahara T, Inanaga S, Tanaka K (2007) Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta 225:1255–1264PubMedCrossRefGoogle Scholar
  14. Fujimoto Ohta M, Usui A, Shinshi H, Ohme-Takagi M (2000) Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 2:393–404CrossRefGoogle Scholar
  15. Gilbert L, Alhagdow M, Nunes-Nesi A, Quemener B, Guillon F, Bouchet B, Faurobert M, Gouble B, Page D, Garcia V (2009) The GDP-d-mannose 3, 5-epimerase (GME) plays a key role at the intersection of ascorbate and non-cellulosic cell wall biosynthesis in tomato. Plant J 60:499–508PubMedCrossRefGoogle Scholar
  16. Girotti AW (2001) Photosensitized oxidation of membrane lipids: reaction pathways, cytotoxic effects and cytoprotective mechanisms. J Photochem Photobiol, B 63:103–113CrossRefGoogle Scholar
  17. Heath R, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198PubMedCrossRefGoogle Scholar
  18. Hebda P, Barber G (1982) GDP-d-mannose: GDP-l-galactose epimerase from Chlorella pyrenoidosa. Meth Enzymol 83:522–525PubMedCrossRefGoogle Scholar
  19. Hebda P, Behrman E, Barber G (1979) The guanosine 5′- diphosphate d-mannose: guanosine 5′-diphosphate l-galactose epimerase of Chlorella pyrenoidosa. Chemical synthesis of guanosine 50-diphosphate l-galactose and further studies of the enzyme and the reaction it catalyzes. Arch Biochem Biophys 194:496–502PubMedCrossRefGoogle Scholar
  20. Ioannidi E, Kalamaki M, Engineer C, Pateraki I, Alexandrou D, Mellidou I, Giovannonni J, Kanellis A (2009) Expression profiling of ascorbic acid-related genes during tomato fruit development and ripening and in response to stress conditions. J Exp Bot 60:663–678PubMedCrossRefPubMedCentralGoogle Scholar
  21. Jain A, Nessler C (2000) Metabolic engineering of an alternative pathway for ascorbic acid biosynthesis in plants. Mol Breed 6:73–78CrossRefGoogle Scholar
  22. Laing W, Wright M, Cooney J, Bulley S (2007) The missing step of the l-galactose pathway of ascorbate biosynthesis in plants, an l-galactose guanyltransferase, increases leaf ascorbate content. Proc Natl Acad Sci USA 104:9534–9539PubMedCrossRefPubMedCentralGoogle Scholar
  23. Linster CL, Clarke SG (2008) l-Ascorbate biosynthesis in higher plants: the role of VTC2. Trends Plant Sci 13:567–573PubMedCrossRefPubMedCentralGoogle Scholar
  24. Linster C, Gomez T, Christensen K, Adler L, Young B, Brenner C, Clarke S (2007) Arabidopsis VTC2 encodes a GDP-l-galactose phosphorylase, the last unknown enzyme in the Smirnoff-Wheeler pathway to ascorbic acid in plants. J Biol Chem 282:18879–18885PubMedCrossRefPubMedCentralGoogle Scholar
  25. Lorence A, Chevone B, Mendes P, Nessler C (2004) myo-Inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis. Plant Physiol 134:1200–1205PubMedCrossRefPubMedCentralGoogle Scholar
  26. Moller IM, Sweetlove LJ (2010) ROS signalling-specificity is required. Trends Plant Sci 15:370–374PubMedCrossRefGoogle Scholar
  27. Nishikirni M, Fukuyama R, Minoshima S, Shimizu N, Yagi K (1994) Cloning and chromosomal mapping of the human non-functional gene for l-gulono-g-lactone oxidase, the enzyme for l-ascorbic acid biosynthesis missing in man. J Biol Chem 269:13685–13688Google Scholar
  28. Rizzolo A, Forni E, Polesello A (1984) HPLC assay of ascorbic acid in fresh and processed fruit and vegetables. Food Chem 14:189–199CrossRefGoogle Scholar
  29. Running JA, Burlingame RP, Berry A (2003) The pathway of l-ascorbic acid biosynthesis in the colourless microalga Prototheca moriformis. J Exp Bot 54:1841–1849PubMedCrossRefGoogle Scholar
  30. Upadhyaya C, Young K, Akula N, Kim H, Heung J, Oh O, Aswath C, Chun S, Kim D, Park S (2009) Over-expression of strawberry d-galacturonic acid reductase in potato leads to accumulation of vitamin C with enhanced abiotic stress tolerance. Plant Sci 177:659–667CrossRefGoogle Scholar
  31. Watanabe K, Suzuki K, Kitamura S (2006) Characterization of a GDP-d-mannose 3′, 5′-epimerase from rice. Phytochemistry 67:338–346PubMedCrossRefGoogle Scholar
  32. Wheeler G, Jones M, Smirnoff N (1998) The biosynthetic pathway of vitamin C in higher plants. Nature 393:365–369PubMedCrossRefGoogle Scholar
  33. Wolucka B, Van Montagu M (2003) GDP-mannose 3′, 5′-epimerase forms GDP-l-gulose, a putative intermediate for the de novo biosynthesis of vitamin C in plants. J Biol Chem 278:47483–47490PubMedCrossRefGoogle Scholar
  34. Wolucka A, Van Montagu M (2007) The VTC2 cycle and the de novo biosynthesis pathways for vitamin C in plants: an opinion. Phytochemistry 68:2602–2613PubMedCrossRefGoogle Scholar
  35. Wolucka B, Persiau G, Van Doorsselaere J, Davey M, Demol H, Vandekerckhove J, Van Montagu M, Zabeau M, Boerjan W (2001) Partial purification and identification of GDP-mannose 3′, 5′-epimerase of Arabidopsis thaliana, a key enzyme of the plant vitamin C pathway. Proc Natl Acad Sci USA 98:14843–14848PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Lichao Ma
    • 1
    • 2
  • Yanrong Wang
    • 1
  • Wenxian Liu
    • 1
  • Zhipeng Liu
    • 1
    Email author
  1. 1.State Key Laboratory of Grassland Agro-ecosystems, School of Pastoral Agricultural Science and TechnologyLanzhou UniversityLanzhouPeople’s Republic of China
  2. 2.Graduate Schoo1 of Lanzhou UniversityLanzhouPeople’s Republic of China

Personalised recommendations