Biotechnology Letters

, Volume 36, Issue 6, pp 1329–1333 | Cite as

Bioreduction and disproportionation of cyclohex-2-enone catalyzed by ene-reductase OYE-1 in ‘micro-aqueous’ organic solvents

  • Dorina Clay
  • Christoph K. Winkler
  • Gábor Tasnádi
  • Kurt Faber
Original Research Paper


The bioreduction and disproportionation of cyclohex-2-enone catalyzed by Old Yellow Enzyme 1 was investigated in presence of organic (co)solvents. Whereas the NADH-dependent bioreduction activity strongly decreased at elevated co-solvent concentrations due to the insolubility of the nicotinamide-cofactor, the NADH-free disproportionation was significantly improved in water-immiscible organic co-solvents at 90 % (v/v) with near-quantitative conversion. This positive effect was attributed to removal of the inhibiting co-product, phenol, from the enzyme’s active site. The best co-solvents show high lipophilicity (logP) and a high potential to solubilize phenol (Kphenol). As a predictive parameter, the ratio of logP/Kphenol should be preferably ≥100.


Bioreduction Cyclohexanone Cyclohex-2-enone Disproportionation Ene-reductase Micro-aqueous systems Old yellow enzyme Phenol 



Financial support by the Austrian BMWFJ, BMVIT, SFG, Standortagentur Tirol and ZIT through the Austrian FFG-COMET-funding program and the Austrian Science Fund (FWF, Vienna, project P22722) is gratefully acknowledged.

Supplementary material

10529_2014_1494_MOESM1_ESM.doc (94 kb)
Supplementary material 1 (DOC 94 kb)


  1. Adalbjörnsson BV, Toogood HS, Fryszkowska A, Pudney CR, Jowitt TA, Leys D, Scrutton NS (2010) Biocatalysis with thermostable enzymes: structure and properties of a thermophilic ‘ene’-reductase related to Old Yellow Enzyme. ChemBioChem 11:197–207PubMedCrossRefGoogle Scholar
  2. Bommarius AS, Blum JK, Abrahamson MJ (2011) Status of protein engineering for biocatalysts: how to design an industrially useful biocatalyst. Curr Opin Chem Biol 15:194–200PubMedCrossRefGoogle Scholar
  3. Bougioukou DJ, Walton AZ, Stewart JD (2010) Towards preparative-scale, biocatalytic alkene reductions. Chem Commun 46:8558–8560CrossRefGoogle Scholar
  4. Brown BJ, Deng Z, Karplus PA, Massey V (1998) On the active site of old yellow enzyme. Role of histidine 191 and asparagine 194. J Biol Chem 273:32753–32762PubMedCrossRefGoogle Scholar
  5. Carrea G, Riva S (2000) Properties and synthetic applications of enzymes in organic solvents. Angew Chem Int Ed 39:2226–2254CrossRefGoogle Scholar
  6. de Gonzalo G, Lavandera I, Faber K, Kroutil K (2007) Enzymatic reduction of ketones in “micro-aqueous” media catalyzed by ADH-A from Rhodococcus ruber. Org Lett 9:2163–2166PubMedCrossRefGoogle Scholar
  7. Dordick JS (1989) Enzymatic catalysis in monophasic organic solvents. Enzyme Microb Technol 11:194–211CrossRefGoogle Scholar
  8. Grunwald J, Wirz B, Scollar MP, Klibanov AM (1986) Asymmetric oxidoreductions catalyzed by alcohol dehydrogenase in organic solvents. J Am Chem Soc 108:6732–6734CrossRefGoogle Scholar
  9. Gupta MN, Roy I (2004) Enzymes in organic media: forms, functions and applications. Eur J Biochem 271:2575–2583PubMedCrossRefGoogle Scholar
  10. Hall M, Stueckler C, Hauer B, Stuermer R, Friedrich T, Breuer M, Kroutil W, Faber K (2008) Asymmetric bioreduction of activated C=C bonds using Zymomonas mobilis NCR enoate reductase and old yellow enzymes OYE 1–3 from yeasts. Eur J Org Chem 9:1511–1516CrossRefGoogle Scholar
  11. Hauer B, Stuermer R, Hall M, Faber K (2007) Asymmetric bioreduction of activated C=C bonds using enoate reductases from the old yellow enzyme family. Curr Opin Chem Biol 11:203–213PubMedCrossRefGoogle Scholar
  12. Jakoblinnert A, Mladenov R, Paul A, Sibilla F, Schwaneberg U, Ansorge-Schumacher MB, de Maria PD (2011) Asymmetric reduction of ketones with recombinant E. coli whole cells in neat substrates. Chem Commun 47:12230–12232CrossRefGoogle Scholar
  13. Jakoblinnert A, van den Wittenboer A, Shivange AV, Bocola M, Heffele L, Ansorge-Schumacher M, Schwaneberg U (2013) Design of an activity and stability improved carbonyl reductase from Candida parapsilosis. J Biotechnol 165:52–62PubMedCrossRefGoogle Scholar
  14. Kohli RM, Massey V (1998) The oxidative half-reaction of Old Yellow Enzyme: the role of tyrosine 196. J Biol Chem 273:32763–32770PubMedCrossRefGoogle Scholar
  15. Kohlmann C, Greiner L, Leitner W, Wandrey C, Lütz S (2009) Ionic liquids as performance additives for electroenzymatic syntheses. Chem Eur J 15:11692–11700PubMedCrossRefGoogle Scholar
  16. Nelson WM (2003) Green solvents for chemistry: perspectives and practice. Oxford University Press, New YorkGoogle Scholar
  17. Nikolova P, Ward OP (1992) Reductive biotransformation by wild type and mutant strains of Saccharomyces cerevisiae in aqueous-organic solvent biphasic systems. Biotechnol Bioeng 39:870–876PubMedCrossRefGoogle Scholar
  18. Ratzka J, Lauterbach L, Lenz O, Ansorge-Schumacher MB (2012) Stabilisation of the NAD+-reducing soluble [NiFe]-hydrogenase from Ralstonia eutropha H16 through modification with methoxy-poly(ethylene) glycol. J Mol Catal B Enzym 74:219–223CrossRefGoogle Scholar
  19. Schittmayer M, Glieder A, Uhl MK, Winkler A, Zach S, Schrittwieser JH, Kroutil W, Macheroux P, Gruber K, Kambourakis S, Rozzell JD, Winkler M (2011) Old Yellow Enzyme-catalyzed dehydrogenation of saturated ketones. Adv Synth Catal 353:268–274CrossRefGoogle Scholar
  20. Serdakowski AL, Dordick JS (2008) Enzyme activation for organic solvents made easy. Trends Biotechnol 26:48–54PubMedCrossRefGoogle Scholar
  21. Shimoda K, Kubota N (2004) Asymmetric reduction of 2-substituted 2-butenolides with reductase from Marchantia polymorpha. Tetrahedron Asymmetry 15:3827–3829CrossRefGoogle Scholar
  22. Smallwood IM (1996) Handbook of organic solvent properties. Arnold, Great BritainGoogle Scholar
  23. Stueckler C, Mueller NJ, Winkler CK, Glueck SM, Gruber K, Steinkellner G, Faber K (2010a) Bioreduction of α-methylcinnamaldehyde derivatives: chemo-enzymatic asymmetric synthesis of Lilial and Helional. Dalton Trans 39:8472–8476PubMedCrossRefGoogle Scholar
  24. Stueckler C, Reiter TC, Baudendistel N, Faber K (2010b) Nicotinamide-independent asymmetric bioreduction of C=C-bonds via disproportionation of enones catalyzed by enoate reductases. Tetrahedron 66:663–667PubMedCentralPubMedCrossRefGoogle Scholar
  25. Toogood HS, Gardiner JM, Scrutton NS (2010) Biocatalytic reductions and chemical versatility of the Old Yellow Enzyme family of flavoprotein oxidoreductases. ChemCatChem 11:892–914CrossRefGoogle Scholar
  26. Villela Filho M, Stillger T, Müller M, Liese A, Wandrey C (2003) Is logP a convenient criterion to guide the choice of solvents for biphasic enzymatic reactions? Angew Chem Int Ed 42:2993–2996CrossRefGoogle Scholar
  27. Winkler CK, Clay D, van Heerden E, Faber K (2013) Overcoming co-product inhibition in the nicotinamide independent asymmetric bioreduction of activated C=C-bonds using flavin-dependent ene-reductases. Biotechnol Bioeng 110:3085–3092PubMedCrossRefGoogle Scholar
  28. Yanto Y, Winkler CK, Lohr S, Hall M, Faber K, Bommarius AS (2011) Asymmetric bioreduction of alkenes using ene–reductases YersER and KYE1 and effects of organic solvents. Org Lett 13:2540–2543PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Dorina Clay
    • 2
  • Christoph K. Winkler
    • 2
  • Gábor Tasnádi
    • 1
  • Kurt Faber
    • 2
  1. 1.ACIB GmbH c/oGrazAustria
  2. 2.Department of Chemistry, Organic & Bioorganic ChemistryUniversity of GrazGrazAustria

Personalised recommendations