Biotechnology Letters

, Volume 36, Issue 3, pp 515–521 | Cite as

Encapsulation and crystallization of Prussian blue nanoparticles by cowpea chlorotic mottle virus capsids

  • Yuanzheng Wu
  • Hetong Yang
  • Hyun-Jae Shin
Original Research Paper


Cowpea chlorotic mottle virus (CCMV) capsids were used to encapsulate Prussian blue (PB) particles based on electrostatic interaction. A negatively-charged metal complex, hexacyanoferrate (III), was entrapped inside the capsids through the disassembly/reassembly process under a pH change from 7.5 to 5.2. The loaded capsids reacted with a second Fe(II) to fabricate PB particles. The synthesis of PB in CCMV capsids was confirmed by a unique colour transition at 710 nm and by size-exclusion FPLC. Transmission electron microscopy images of PB-CCMV biohybrids presented discrete spherical particles with a relatively homogeneous size. Dynamic light scattering of PB-CCMV showed two peaks of 29.2 ± 1.7 nm corresponding to triangulation number T = 3 particles, and 17.5 ± 1.2 nm of pseudo T = 2 particles. The encapsulation and crystallization of PB in CCMV provided an efficient method for the self-organization of bimetallic nanoparticles.


Biohybrid Bimetallic nanoparticles Capsids Cowpea chlorotic mottle virus Encapsulation Nanoparticles Prussian blue 



We thank Dr. Young-Chul Lee (KAIST) for providing the TEM pictures. This study was supported by the research fund from Chosun University, 2013.


  1. Allison RF, Janda M, Ahlquist P (1988) Infectious in vitro transcripts from cowpea chlorotic mottle virus cDNA clones and exchange of individual RNA components with brome mosaic virus. J Virol 62:3581–3588PubMedCentralPubMedGoogle Scholar
  2. Chen Z, Stauffacher C, Johnson JE (1990) Capsid structure and RNA packaging in comovirus. Semin Virol 1:453–466Google Scholar
  3. Culp JT, Park JH, Frye F, Huh YD, Meisel MW, Talham DR (2005) Magnetism of metal cyanide networks assembled at interfaces. Coord Chem Rev 249:2642–2648CrossRefGoogle Scholar
  4. Daniel MC, Tsvetkova IB, Quinkert ZT, Murali A, De M, Rotello VM, Kao CC, Dragnea B (2010) Role of surface charge density in nanoparticle-templated assembly of bromovirus protein cages. ACS Nano 4:3853–3860PubMedCentralPubMedCrossRefGoogle Scholar
  5. De la Escosura A, Verwegen M, Sikkema F, Comellas-Aragonès M, Kirilyuk A, Rasing T, Nolte RJ, Cornelissen JJ (2008) Viral capsids as templates for the production of monodisperse Prussian blue nanoparticles. Chem Commun (Camb) 13:1542–1544CrossRefGoogle Scholar
  6. De Tacconi NR, Rajeshwar K, Lezna RO (2003) Metal hexacyanoferrates: electrosynthesis, in situ characterization, and applications. Chem Mater 15:3046–3062CrossRefGoogle Scholar
  7. Dei A (2005) Photomagnetic effects in polycyanometallate compounds: an intriguing future chemically based technology? Angew Chem Int Ed 44:1160–1163CrossRefGoogle Scholar
  8. DeLongchamp DM, Hammond PT (2004) High-contrast electrochromism and controllable dissolution of assembled Prussian blue/polymer nanocomposites. Adv Funct Mater 14:224–232CrossRefGoogle Scholar
  9. Domínguez-Vera JM, Colacio E (2003) Nanoparticles of Prussian blue ferritin: a new route for obtaining nanomaterials. Inorg Chem 42:6983–6985PubMedCrossRefGoogle Scholar
  10. Douglas T, Young M (1998) Host–guest encapsulation of materials by assembled virus protein cages. Nature 393:152–155CrossRefGoogle Scholar
  11. Ferlay S, Mallah T, Quahe′s R, Veillet P, Verdaguer M (1995) A room-temperature organometallic magnet based on Prussian blue. Nature 378:701–703CrossRefGoogle Scholar
  12. Fischlechner M, Donath E (2007) Viruses as building blocks for materials and devices. Angew Chem Int Ed 46:3184–3193CrossRefGoogle Scholar
  13. Sato O, Iyoda T, Fujishima A, Hashimoto K (1996) Photoinduced magnetization of a cobalt-iron cyanide. Science 272:704–705PubMedCrossRefGoogle Scholar
  14. Sheehan D, O’Sullivan S (2003) Fast protein liquid chromatography. Protein purification protocols 244Google Scholar
  15. Speir JA, Munshi S, Wang G, Baker TS, Johnson JE (1995) Structures of the native and swollen forms of cowpea chlorotic mottle virus determined by X-ray crystallography and cryo-electron microscopy. Structure 3:63–78PubMedCrossRefGoogle Scholar
  16. Taguchi M, Yamada K, Suzuki K, Sato O, Einaga Y (2005) Photoswitchable magnetic nanoparticles of Prussian blue with amphiphilic azobenzene. Chem Mater 17:4554–4559CrossRefGoogle Scholar
  17. Van der Graaf M, van Mierlo CP, Hemminga MA (1991) Solution conformation of a peptide fragment representing a proposed RNA-binding site of a viral coat protein studied by two-dimensional NMR. Biochemistry 30:5722–5727PubMedCrossRefGoogle Scholar
  18. Vriezema DM, Comellas-Aragones M, Elemans JA, Cornelissen JJ, Rowan AE, Nolte RJ (2005) Self-assembled nanoreactors. Chem Rev 105:1445–1489PubMedCrossRefGoogle Scholar
  19. Wu Y, Yang H, Shin HJ (2011) Expression and self assembly of cowpea chlorotic mottle virus capsid proteins in Pichia pastoris and encapsulation of fluorescent myoglobin. MRS Proceedings 1317:mrsf10-1317-rr03-05 doi: 10.1557/opl.2011.138
  20. Wu Y, Yang H, Shin HJ (2013) Viruses as self-assembled nanocontainers for encapsulation of functional cargoes. Korean J Chem Eng 30:1359–1367CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Chemical and Biochemical EngineeringChosun UniversityGwangjuRepublic of Korea
  2. 2.Biotechnology Center of Shandong Academy of SciencesJinanPeople’s Republic of China

Personalised recommendations