Advertisement

Biotechnology Letters

, Volume 36, Issue 3, pp 547–551 | Cite as

Nitrite (not free nitrous acid) is the main inhibitor of the anammox process at common pH conditions

  • D. Puyol
  • J. M. Carvajal-Arroyo
  • R. Sierra-Alvarez
  • J. A. Field
Original Research Paper

Abstract

Nitrite is a substrate but also an inhibitor of anaerobic ammonium oxidation (anammox).There is currently no consensus on whether ionized nitrite (INi) or free nitrous acid (FNA) is the actual inhibitor of the process. The inhibition by INi and FNA on the anammox process has been analysed using a wide range of INi and FNA concentrations and by altering the pH and total nitrite conditions. The inhibitory impacts of both species were quantified through a rational inhibition equation, considering INi and FNA as substrate inhibitor and non-competitive inhibitor, respectively. Inhibitory constants were calculated with strong statistical support as 561 mg INi-N l−1 and 0.117 mg FNA-N l−1. Based on the model, INi is the main inhibiting species of the anammox process at pH > 7.1, which are the most common conditions occurring in field applications of anammox.

Keywords

Anaerobic ammonium oxidation Anammox Free nitrous acid Inhibition Kinetics Nitrite 

Notes

Acknowledgments

This work has been supported by the University of Arizona Water Sustainability Program, and by the National Science Foundation (under Contract CBET-1234211). D. Puyol wishes to thank the Spanish Ministry of Education, the USA Council for the International Exchange of Scholars (CIES) and the Spanish Fulbright Commission for receiving a post-doctoral Fulbright grant. In memory of José Antonio Santos González (R.I.P.).

Supplementary material

10529_2013_1397_MOESM1_ESM.docx (58 kb)
Supplementary material 1 (DOCX 57 kb)

References

  1. Ahn Y-H (2006) Sustainable nitrogen elimination biotechnologies: a review. Proc Biochem 41:1709–1721CrossRefGoogle Scholar
  2. Carvajal-Arroyo JM, Puyol D, Li G, Lucero-Acuña A, Sierra-Alvarez R, Field JA (2013) Pre-exposure to nitrite in the absence of ammonium strongly inhibits anammox. Water Res. doi: 10.1016/j.watres.2013.09.015 PubMedGoogle Scholar
  3. Egli K, Fanger U, Alvarez PJ, Siegrist H, van der Meer JR, Zehnder AJ (2001) Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate. Arch Microbiol 175:198–207PubMedCrossRefGoogle Scholar
  4. Fernández I, Dosta J, Fajardo C, Campos JL, Mosquera-Corral A, Méndez R (2012) Short- and long-term effects of ammonium and nitrite on the Anammox process. J Environ Manag 95(Supplement):S170–S174CrossRefGoogle Scholar
  5. Francis CA, Beman JM, Kuypers MM (2007) New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation. ISME J 1:19–27PubMedCrossRefGoogle Scholar
  6. Jiménez E, Giménez JB, Seco A, Ferrer J, Serralta J (2012) Effect of pH, substrate and free nitrous acid concentrations on ammonium oxidation rate. Bioresour Technol 124:478–484PubMedCrossRefGoogle Scholar
  7. Jubany I, Baeza JA, Carrera J, Lafuente J (2005) Respirometric calibration and validation of a biological nitrite oxidation model including biomass growth and substrate inhibition. Water Res 39:4574–4584PubMedCrossRefGoogle Scholar
  8. Jubany I, Lafuente J, Baeza JA, Carrera J (2009) Total and stable washout of nitrite oxidizing bacteria from a nitrifying continuous activated sludge system using automatic control based on oxygen uptake rate measurements. Water Res 43:2761–2772PubMedCrossRefGoogle Scholar
  9. Kimura Y, Isaka K, Kazama F, Sumino T (2010) Effects of nitrite inhibition on anaerobic ammonium oxidation. Appl Microbiol Biotechnol 86:359–365PubMedCrossRefGoogle Scholar
  10. Kuenen JG (2008) Anammox bacteria: from discovery to application. Nat Rev Microbiol 6:320–326PubMedCrossRefGoogle Scholar
  11. Lotti T, van der Star WRL, Kleerebezem R, Lubello C, van Loosdrecht MCM (2012) The effect of nitrite inhibition on the anammox process. Water Res 46:2559–2569PubMedCrossRefGoogle Scholar
  12. Oshiki M, Shimokawa M, Fujii N, Satoh H, Okabe S (2011) Physiological characteristics of the anaerobic ammonium-oxidizing bacterium ‘Candidatus Brocadia sinica’. Microbiology 157:1706–1713PubMedCrossRefGoogle Scholar
  13. Puyol D, Carvajal-Arroyo JM, Garcia B, Sierra-Alvarez R, Field JA (2013) Kinetic characterization of Brocadia spp.-dominated anammox cultures. Bioresour Technol 139:94–100PubMedCrossRefGoogle Scholar
  14. Strous M, Kuenen JG, Jetten MSM (1999) Key physiology of anaerobic ammonium oxidation. Appl Environ Microbiol 65:3248–3250PubMedCentralPubMedGoogle Scholar
  15. Tang C-J, Zheng P, Chai L-Y, Min X-B (2013) Thermodynamic and kinetic investigation of anaerobic bioprocesses on ANAMMOX under high organic conditions. Chem Eng J 230:149–157CrossRefGoogle Scholar
  16. Tao Y, Gao D-W, Fu Y, Wu W-M, Ren N-Q (2012) Impact of reactor configuration on anammox process start-up: MBR versus SBR. Bioresour Technol 104:73–80PubMedCrossRefGoogle Scholar
  17. Van Hulle SWH, Vandeweyer HJP, Meesschaert BD, Vanrolleghem PA, Dejans P, Dumoulin A (2010) Engineering aspects and practical application of autotrophic nitrogen removal from nitrogen rich streams. Chem Eng J 162:1–20CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • D. Puyol
    • 1
  • J. M. Carvajal-Arroyo
    • 1
  • R. Sierra-Alvarez
    • 1
  • J. A. Field
    • 1
  1. 1.Department of Chemical and Environmental EngineeringThe University of ArizonaTucsonUSA

Personalised recommendations