Advertisement

Biotechnology Letters

, Volume 36, Issue 3, pp 461–469 | Cite as

Lectin of Abelmoschus esculentus (okra) promotes selective antitumor effects in human breast cancer cells

  • Leonardo G. Monte
  • Tatiane Santi-Gadelha
  • Larissa B. Reis
  • Elizandra Braganhol
  • Rafael F. Prietsch
  • Odir A. Dellagostin
  • Rodrigo Rodrigues e Lacerda
  • Carlos A. A. Gadelha
  • Fabricio R. Conceição
  • Luciano S. Pinto
Original Research Paper

Abstract

The anti-tumor effects of a newly-discovered lectin, isolated from okra, Abelmoschus esculentus (AEL), were investigated in human breast cancer (MCF7) and skin fibroblast (CCD-1059 sk) cells. AEL induced significant cell growth inhibition (63 %) in MCF7 cells. The expression of pro-apoptotic caspase-3, caspase-9, and p21 genes was increased in MCF7 cells treated with AEL, compared to those treated with controls. In addition, AEL treatment increased the Bax/Bcl-2 ratio in MCF7 cells. Flow cytometry also indicated that cell death (72 %) predominantly occurred through apoptosis. Thus, AEL in its native form promotes selective antitumor effects in human breast cancer cells and may represent a potential therapeutic to combat human breast cancer.

Keywords

Abelmoschus esculentus Apoptosis Cancer inhibition Human breast cancer Lectin Okra Plants 

Notes

Acknowledgments

This work was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Grants no 02841/09-6 and 23.038.019120/9-3, Fundação de Amparo a Pesquisa do Rio Grande do Sul (FAPERGS), Grants no. 11/1842-5 and Conselho Nacional de Pesquisa (CNPq). The authors also wish to thank Dr. Cláudia Pinho Hartleben, MSc. Eduarda Schultze, MSc. Karine Rech Begnini and MSc. Virginia Campello Yurgel for their valuable technical assistance with the flow cytometric analysis.

Supplementary material

10529_2013_1382_MOESM1_ESM.jpg (13 kb)
Fig. S1 Evaluation of AEL by SDS-PAGE after the purification and quantification assays. Column "M": Molecular Weight Markers (GE Healthcare, Life Sciences). Column "1" Abelmoschus esculentus lectin (AEL) (JPEG 13 kb)
10529_2013_1382_MOESM2_ESM.doc (49 kb)
Supplementary material 2 (DOC 49 kb)

References

  1. Begnini KR, Rizzi C, Campos VF, Borsuk S, Schultze E, Yurgel VC, Nedel F, Dellagostin OA, Collares T, Seixas FK (2013) Auxotrophic recombinant Mycobacterium bovis BCG overexpressing Ag85B enhances cytotoxicity on superficial bladder cancer cells in vitro. Appl Microbiol Biotechnol 97:1543–1552PubMedCrossRefGoogle Scholar
  2. Campos VF, Collares T, Deschamps JC, Seixas FK, Dellagostin OA, Lanes CF, Sandrini J, Marins LF, Okamoto M, Sampaio LA, Robaldo RB (2010) Identification, tissue distribution and evaluation of brain neuropeptide Y gene expression in the Brazilian flounder Paralichthys orbignyanus. J Biosci 35:405–413PubMedCrossRefGoogle Scholar
  3. Chan YS, Ng TB (2013) A lectin with highly potent Inhibitory activity toward breast cancer cells from edible tubers of Dioscorea opposita cv. Nagaimo. PLoS One 8:e54212PubMedCentralPubMedCrossRefGoogle Scholar
  4. Chan YS, Wong JH, Fang EF, Pan W, Ng TB (2012) Isolation of a glucosamine binding leguminous lectin with mitogenic activity towards splenocytes and anti-proliferative activity towards tumor cells. PLoS One 7:e38961PubMedCentralPubMedCrossRefGoogle Scholar
  5. Damodaran D, Jeyakani J, Chauhan A, Kumar N, Chandra NR, Surolia A (2008) Cancer LectinDB: a database of lectins relevant to cancer. Glycoconj J 25:191–198PubMedCrossRefGoogle Scholar
  6. Eligar SM, Pujari R, Swamy BM, Shastry P, Inamdar SR (2012) Sclerotium rolfsii lectin inhibits proliferation and induces apoptosis in human ovarian cancer cell line PA-1. Cell Prolif 45:397–403PubMedCrossRefGoogle Scholar
  7. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516PubMedCentralPubMedCrossRefGoogle Scholar
  8. Forouzanfar MH, Foreman KJ, Delossantos AM, Lozano R, Lopez AD, Murray CJ, Naghavi M (2011) Breast and cervical cancer in 187 countries between 1980 and 2010: a systematic analysis. Lancet 378:1461–1484PubMedCrossRefGoogle Scholar
  9. Friedenreich CM (2011) Physical activity and breast cancer: review of the epidemiologic evidence and biologic mechanisms. Recent Results Cancer Res 188:125–139PubMedCrossRefGoogle Scholar
  10. Hu L, Sun Y, Hu J (2010) Catalpol inhibits apoptosis in hydrogen peroxide-induced endothelium by activating the PI3 K/Akt signaling pathway and modulating expression of Bcl-2 and Bax. Eur J Pharmacol 628:155–163PubMedCrossRefGoogle Scholar
  11. Huang LH, Yan QJ, Kopparapu NK, Jiang ZQ, Sun Y (2012) Astragalus membranaceus lectin (AML) induces caspase-dependent apoptosis in human leukemia cells. Cell Prolif 45:15–21PubMedCrossRefGoogle Scholar
  12. Jimenez-Castells C, de la Torre BG, Andreu D, Gutierrez-Gallego R (2008) Neo-glycopeptides: the importance of sugar core conformation in oxime-linked glycoprobes for interaction studies. Glycoconj J 25:879–887PubMedCrossRefGoogle Scholar
  13. Kim MS, Lee J, So HS, Lee KM, Jung BH, Chung SY, Moon SR, Kim NS, Ko CB, Kim HJ, Kim YK, Park R (2001) Gamma-interferon (IFN-gamma) augments apoptotic response to mistletoe lectin-II via upregulation of Fas/Fas L expression and caspase activation in human myeloid U937 cells. Immunopharmacol Immunotoxicol 23:55–66PubMedCrossRefGoogle Scholar
  14. Lei HY, Chang CP (2009) Lectin of Concanavalin A as an anti-hepatoma therapeutic agent. J Biomed Sci 16:10PubMedCentralPubMedCrossRefGoogle Scholar
  15. Lu CC, Yang JS, Huang AC, Hsia TC, Chou ST, Kuo CL, Lu HF, Lee TH, Wood WG, Chung JG (2010) Chrysophanol induces necrosis through the production of ROS and alteration of ATP levels in J5 human liver cancer cells. Mol Nutr Food Res 54:967–976PubMedCentralPubMedCrossRefGoogle Scholar
  16. Pinto LS, Nagano CS, Oliveira TM, Moura TR, Sampaio AH, Debray H, Pinto VP, Dellagostin OA, Cavada BS (2008) Purification and molecular cloning of a new galactose-specific lectin from Bauhinia variegata seeds. J Biosci 33:355–363PubMedCrossRefGoogle Scholar
  17. Sanchez-Pomales G, Morris TA, Falabella JB, Tarlov MJ, Zangmeister RA (2012) A lectin-based gold nanoparticle assay for probing glycosylation of glycoproteins. Biotechnol Bioeng 109:2240–2249PubMedCrossRefGoogle Scholar
  18. Soares GSF, Assreuy AMS, Gadelha CAA, Gomes VM, Delatorre P, Simões RS, Cavada BS, Leite JF, Nagano CS, Pinto NV, Pessoa HLF, Santi-Gadelha T (2012) Purification and biological activities of Abelmoschus esculentus seed lectin. Protein J 31:674–680CrossRefGoogle Scholar
  19. Taylor WR, Stark GR (2001) Regulation of the G2/M transition by p53. Oncogene 20:1803–1815PubMedCrossRefGoogle Scholar
  20. Wang WL, McHenry P, Jeffrey R, Schweitzer D, Helquist P, Tenniswood M (2008) Effects of iejimalide B, a marine macrolide, on growth and apoptosis in prostate cancer cell lines. J Cell Biochem 105:998–1007PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Leonardo G. Monte
    • 1
  • Tatiane Santi-Gadelha
    • 4
  • Larissa B. Reis
    • 1
  • Elizandra Braganhol
    • 5
  • Rafael F. Prietsch
    • 5
  • Odir A. Dellagostin
    • 2
  • Rodrigo Rodrigues e Lacerda
    • 4
  • Carlos A. A. Gadelha
    • 4
  • Fabricio R. Conceição
    • 3
  • Luciano S. Pinto
    • 1
  1. 1.Laboratório de Biotecnologia Vegetal e Proteômica, Núcleo de Biotecnologia, Centro de Desenvolvimento TecnológicoUniversidade Federal de PelotasPelotasBrazil
  2. 2.Laboratório de Vacinologia, Núcleo de Biotecnologia, Centro de Desenvolvimento TecnológicoUniversidade Federal de PelotasPelotasBrazil
  3. 3.Laboratório de Imunologia Aplicada, Núcleo de Biotecnologia, Centro de Desenvolvimento TecnológicoUniversidade Federal de PelotasPelotasBrazil
  4. 4.Departamento de Biologia MolecularUniversidade Federal da ParaíbaJoão PessoaBrazil
  5. 5.Centro de Ciências Químicas, Farmacêuticas e de AlimentosUniversidade Federal de PelotasPelotasBrazil

Personalised recommendations