Advertisement

Biotechnology Letters

, Volume 36, Issue 2, pp 287–294 | Cite as

Design of riboregulators for control of cyanobacterial (Synechocystis) protein expression

  • Koichi Abe
  • Yuta Sakai
  • Saki Nakashima
  • Masataka Araki
  • Wataru Yoshida
  • Koji Sode
  • Kazunori Ikebukuro
Original Research Paper

Abstract

Cyanobacteria are attractive host bacteria for biofuel production because they can covert CO2 to biofuel lipids using only sunlight, water, and inorganic ions. For genetically engineering an ideal cyanobacterium, a synthetic biological approach is promising but few genetic components have been characterized in cyanobacteria. Here for controlling cyanobacterial protein expression, we constructed riboregulators, that one of the post-transcriptional regulators composed of RNAs. Riboregulators harboring a ribosome-binding site suitable for Synechocystis sp. were designed by trial and error using Escherichia coli as host bacteria. The designed riboregulators were effective in Synechocystis sp. as well as E. coli with slight interference on growth only observed in E. coli. They will therefore be useful tools for controlling target gene expression.

Keywords

Biofuels Cyanobacteria Post-transcriptional gene regulation Riboregulator Synechocystis Synthetic biology 

Notes

Acknowledgments

This work was supported financially by the Core Research of Evolutional Science & Technology program (CREST) from the Japan Science and Technology Agency (JST).

Supplementary material

10529_2013_1352_MOESM1_ESM.docx (16 kb)
Supplementary material 1 (DOCX 15 kb)
10529_2013_1352_MOESM2_ESM.docx (11 kb)
Supplementary material 2 (DOCX 11 kb)

References

  1. Atsumi S, Higashide W, Liao JC (2009) Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol 27:1177–1180CrossRefPubMedGoogle Scholar
  2. Bagdasarian M, Lurz R, Ruckert B, Franklin FC, Bagdasarian MM, Frey J, Timmis KN (1981) Specific-purpose plasmid cloning vectors. II. Broad host range, high copy number, RSF1010-derived vectors, and a host-vector system for gene cloning in Pseudomonas. Gene 16:237–247CrossRefPubMedGoogle Scholar
  3. Callura JM, Dwyer DJ, Isaacs FJ, Cantor CR, Collins JJ (2010) Tracking, tuning, and terminating microbial physiology using synthetic riboregulators. Proc Natl Acad Sci USA 107:15898–15903CrossRefPubMedCentralPubMedGoogle Scholar
  4. Callura JM, Cantor CR, Collins JJ (2012) Genetic switchboard for synthetic biology applications. Proc Natl Acad Sci USA 109:5850–5855CrossRefPubMedCentralPubMedGoogle Scholar
  5. Franch T, Petersen M, Wagner EG, Jacobsen JP, Gerdes K (1999) Antisense RNA regulation in prokaryotes: rapid RNA/RNA interaction facilitated by a general U-turn loop structure. J Mol Biol 294:1115–1125CrossRefPubMedGoogle Scholar
  6. Friedland AE, Lu TK, Wang X, Shi D, Church G, Collins JJ (2009) Synthetic gene networks that count. Science 324:1199–1202CrossRefPubMedCentralPubMedGoogle Scholar
  7. Heidorn T, Camsund D, Huang HH, Lindberg P, Oliveira P, Stensjo K, Lindblad P (2011) Synthetic biology in cyanobacteria engineering and analyzing novel functions. Methods Enzymol 497:539–579CrossRefPubMedGoogle Scholar
  8. Heidrich N, Brantl S (2003) Antisense-RNA mediated transcriptional attenuation: importance of a U-turn loop structure in the target RNA of plasmid pIP501 for efficient inhibition by the antisense RNA. J Mol Biol 333:917–929CrossRefPubMedGoogle Scholar
  9. Hjalt TA, Wagner EG (1995) Bulged-out nucleotides protect an antisense RNA from RNase III cleavage. Nucleic Acids Res 23:571–579CrossRefPubMedCentralPubMedGoogle Scholar
  10. Huang HH, Camsund D, Lindblad P, Heidorn T (2010) Design and characterization of molecular tools for a synthetic biology approach towards developing cyanobacterial biotechnology. Nucleic Acids Res 38:2577–2593CrossRefPubMedCentralPubMedGoogle Scholar
  11. Isaacs FJ, Dwyer DJ, Ding C, Pervouchine DD, Cantor CR, Collins JJ (2004) Engineered riboregulators enable post-transcriptional control of gene expression. Nat Biotechnol 22:841–847CrossRefPubMedGoogle Scholar
  12. Liu X, Curtiss R III (2009) Nickel-inducible lysis system in Synechocystis sp. PCC 6803. Proc Natl Acad Sci USA 106:21550–21554CrossRefPubMedCentralPubMedGoogle Scholar
  13. Liu X, Curtiss R III (2012) Thermorecovery of cyanobacterial fatty acids at elevated temperatures. J Biotechnol 161:445–449CrossRefPubMedGoogle Scholar
  14. Lopez-Maury L, Garcia-Dominguez M, Florencio FJ, Reyes JC (2002) A two-component signal transduction system involved in nickel sensing in the cyanobacterium Synechocystis sp. PCC 6803. Mol Microbiol 43:247–256CrossRefPubMedGoogle Scholar
  15. Lutz R, Bujard H (1997) Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res 25:1203–1210CrossRefPubMedCentralPubMedGoogle Scholar
  16. Mitschke J, Georg J, Scholz I, Sharma CM, Dienst D, Bantscheff J, Voss B, Steglich C, Wilde A, Vogel J et al (2011) An experimentally anchored map of transcriptional start sites in the model cyanobacterium Synechocystis sp. PCC 6803. Proc Natl Acad Sci USA 108:2124–2129CrossRefPubMedCentralPubMedGoogle Scholar
  17. Oliver JW, Machado IM, Yoneda H, Atsumi S (2013) Cyanobacterial conversion of carbon dioxide to 2,3-butanediol. Proc Natl Acad Sci USA 110:1249–1254CrossRefPubMedCentralPubMedGoogle Scholar
  18. Rodrigo G, Landrain TE, Jaramillo A (2012) De novo automated design of small RNA circuits for engineering synthetic riboregulation in living cells. Proc Natl Acad Sci USA 109:15271–15276CrossRefPubMedCentralPubMedGoogle Scholar
  19. Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev 35:171–205PubMedCentralPubMedGoogle Scholar
  20. Ying X, Cao Y, Wu J, Liu Q, Cha L, Li W (2011) sTarPicker: a method for efficient prediction of bacterial sRNA targets based on a two-step model for hybridization. PLoS One 6:e22705CrossRefPubMedCentralPubMedGoogle Scholar
  21. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Koichi Abe
    • 1
    • 2
  • Yuta Sakai
    • 1
    • 2
  • Saki Nakashima
    • 1
    • 2
  • Masataka Araki
    • 1
    • 2
  • Wataru Yoshida
    • 1
    • 2
  • Koji Sode
    • 1
    • 2
  • Kazunori Ikebukuro
    • 1
    • 2
  1. 1.Department of Biotechnology and Life ScienceTokyo University of Agriculture & TechnologyKoganeiJapan
  2. 2.JST CRESTKoganeiJapan

Personalised recommendations