Advertisement

Biotechnology Letters

, Volume 35, Issue 9, pp 1533–1539 | Cite as

Development of a chloroplast DNA marker for monitoring of transgene introgression in Brassica napus L.

  • Hee-Jong WooEmail author
  • Myung-Ho Lim
  • Kong-Sik Shin
  • Bianca Martins
  • Bum-Kyu Lee
  • Hyun-Suk Cho
  • Carol A. Mallory-Smith
Original Research Paper

Abstract

Chloroplast molecular markers can provide useful information for high-resolution analysis of inter- and intra-specific variation in Brassicaceae and for differentiation between its species. Combining data generated from nuclear and chloroplast markers enables the study of seed and pollen movement, and assists in the assessment of gene-flow from genetically modified (GM) plants through hybridization studies. To develop chloroplast DNA markers for monitoring of transgene introgression in Brassica napus L., we searched for sequence variations in the chloroplast (cp) genome, and developed a simple cpDNA marker that is reliable, time-saving, and easily discriminates among 4 species (B. napus, B. rapa, Raphanus sativus, and Sinapis alba) based on PCR-product length polymorphism. This marker will be useful to identify maternal lineages and to estimate transgene movement of GM canola.

Keywords

Brassica napus Chloroplast DNA marker cpDNA Intergenic region Simple PCR 

Notes

Acknowledgments

This study was supported by a grant from Research Program for Agricultural Science & Technology Development (Project No. PJ008545), National Academy of Agricultural Science and the Next-Generation BioGreen 21 Program (Plant Molecular Breeding Center No. PJ008021), Rural Development Administration, Republic of Korea.

Supplementary material

10529_2013_1236_MOESM1_ESM.docx (12 kb)
Supplementary material 1 (DOCX 12 kb)

References

  1. Allender CJ, King GJ (2010) Origins of the amphiploid species Brassica napus L. investigated by chloroplast and nuclear molecular markers. BMC Plant Biol 10:54–62PubMedCrossRefGoogle Scholar
  2. Aono M, Wakiyama S, Nagatsu M, Nakajima N, Tamaoki M et al (2006) Detection of feral transgenic oilseed rape with multiple-herbicide resistance in Japan. Environ Biosafety Res 5:77–87PubMedCrossRefGoogle Scholar
  3. Beckie HJ, Warwick SI, Nair H, Seguin-Swartz G (2003) Gene flow in commercial fields of herbicide-resistant canola (Brassica napus). Ecol Appl 13:1276–1294CrossRefGoogle Scholar
  4. Chen X, Li M, Shi J, Fu D, Qian W, Zou J, Zhang C, Meng J (2008) Gene expression profiles associated with intersubgenomic heterosis in Brassica napus. Theor Appl Genet 117:1031–1040PubMedCrossRefGoogle Scholar
  5. Crawley MJ, Brown SL (1995) Seed limitation and the dynamics of feral oilseed rape on the M25 motorway. Proc R Soc B 256:49–54CrossRefGoogle Scholar
  6. Dass H, Nybom H (1967) The relationships between Brassica nigra, B. campestris, B. oleracea, and their amphidiploids hybrids studied by means of numerical chemotaxonomy. Can J Genet Cytol 9:880–890Google Scholar
  7. Flannery ML, Mitchell FJG, Coyne S, Kavanagh TA, Burke JI, Salamin N, Dowding P, Hodkinson TR (2006) Plastid genome characterisation in Brassica and Brassicaseae using a new set of nine SSRs. Theor Appl Genet 113:1221–1231PubMedCrossRefGoogle Scholar
  8. Hasterok R, Wolny E, Hosiawa M, Kowalczyk M, Kulak-Ksiazczyk S, Ksiazczyk T, Heneen WK, Maluszynska J (2006) Comparative analysis of rDNA distribution in chromosomes of various species of Brassicaceae. Ann Bot 97:205–216PubMedCrossRefGoogle Scholar
  9. Hu ZY, Hua W, Huang SM, Wang HZ (2011) Complete chloroplast genome sequence of rapeseed (Brassica napus L.) and its evolutionary implications. Genet Resour Crop Evol 58:875–887CrossRefGoogle Scholar
  10. James C (2011) Global status of commercialized biotech/GM crops. ISAAA brief no 43. ISAAA, IthacaGoogle Scholar
  11. Jorgensen RB, Andersen B, Landbo L, Mikkelsen TR (1996) Spontaneous hybridization between oilseed rape (Brassica napus) and weedy relatives. Acta Hortic 407:193–200Google Scholar
  12. Knispel AL, McLachlan SM (2010) Landscape-scale distribution and persistence of genetically modified oilseed rape (Brassica napus) in Manitoba, Canada. Environ Sci Pollut Res 17:13–25CrossRefGoogle Scholar
  13. Knispel AL, McLachlan SM, Van Acker RC, Friesen LF (2008) Gene flow and multiple herbicide resistance in escaped canola populations. Weed Sci 56:72–80CrossRefGoogle Scholar
  14. Lazaro A, Aguinagalde I (1996) Phylogenetic relationships between the wild taxa of the Brassica oleracea L. group (2n = 18) using the random amplified polymorphic DNA assay. Scientia Hortic 65:219–227CrossRefGoogle Scholar
  15. Negi MS, Devic M, Delseny M, Lakshmikumaran M (2000) Identification of AFLP fragments linked to seed coat color in Brassica juncea and conversion to a SCAR marker for rapid selection. Theor Appl Genet 101:146–152CrossRefGoogle Scholar
  16. Panda S, Martin JP, Aguinagalde I (2003) Chloroplast and nuclear DNA studies in a few members of the Brassica oleracea L. group using PCR-RFLP and ISSR-PCR markers: a population genetic analysis. Theor Appl Genet 106:1122–1128PubMedGoogle Scholar
  17. Pessel FD, Lecomte J, Emeriau V, Krouti M, Messean A, Gouyon PH (2001) Persistence of oilseed rape (Brassica napus L.) outside of cultivated fields. Theor Appl Genet 102:841–846CrossRefGoogle Scholar
  18. Plieske J, Struss D (2001) Microsatellite markers for genome analysis in Brassica. I. development in Brassica napus and abundance in Brassicaceae species. Theor Appl Genet 102:689–694CrossRefGoogle Scholar
  19. Quinn MP (2010) Potential impacts of canola (Brassica napus L.) on Brassica vegetable seed production in the Willametle Valley of Oregon. Ph.D. thesis, Oregon State University, USAGoogle Scholar
  20. Quirós CF (2001) DNA-based marker Brassica maps. In: Phillips RL, Vasil IK (eds) Advances in cellular and molecular biology of plants. DNA based marker in plants, vol I. Kluwer, Dordrecht, pp 201–238Google Scholar
  21. Quirós CF, Paterson AH (2004) Genome mapping and analysis. In: Pua EC, Douglas CJ (eds) Biotechnology in agriculture and forestry. Brassica, vol 54. Springer, Berlin, pp 31–42Google Scholar
  22. Rieger MA, Lamond M, Preston C, Powles SB, Roush RT (2002) Pollenmediated movement of herbicide resistance between commercial canola fields. Science 296:2386–2388PubMedCrossRefGoogle Scholar
  23. Rodriguez JM, Berke T, Engle L, Nienhuis J (1999) Variation among and within Capsicum species revealed by RAPD marker. Theor Appl Genet 99:147–156CrossRefGoogle Scholar
  24. Saski C, Lee S, Fjellheim S, Guda C, Jansen RK, Luo H, Tomkins J, Rognli OA, Daniell H, Clarke JL (2007) Complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera, and comparative analyses with other grass genomes. Theor Appl Genet 115:571–590PubMedCrossRefGoogle Scholar
  25. Semagn K, Bjørnstad Å, Ndjiondjop MN (2006) An overview of molecular marker methods for plants. Afr J Biotechnol 5:2540–2568Google Scholar
  26. Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am J Bot 94:275–288PubMedCrossRefGoogle Scholar
  27. Song KM, Osborn TC (1992) Polyphyletic origins of Brassica napus: new evidence based on nuclear and RFLP organelle analysis. Genome 35:992–1001CrossRefGoogle Scholar
  28. Song KM, Osborn TC, Williams PH (1988) Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs). Theor Appl Genet 75:784–794CrossRefGoogle Scholar
  29. Suwabe K, Iketani H, Nunome T, Kage T, Hirai M (2002) Isolation and characterization of microsatellites in Brassica rapa L. Theor Appl Genet 104:1092–1098PubMedCrossRefGoogle Scholar
  30. Wang YP, Zhao XX, Sonntag K, Wehling P, Snowdon RJ (2005) Behaviour of Sinapis alba chromosomes in a Brassica napus background revealed by genomic in situ hybridization. Chromosome Res 13:819–826PubMedCrossRefGoogle Scholar
  31. Warwick SI, Sauder C (2005) Phylogeny of tribe Brassiceae (Brassicaceae) based on chloroplast restriction site polymorphism and nuclear ribosomal internal transcribed spacer (ITS) and chloroplast trnL intron sequences. Can J Bot 83:467–483CrossRefGoogle Scholar
  32. Warwick SI, Simard M-J, Légère A, Beckie HJ, Braun L, Zhu B, Mason P, Séguin-Swartz G, Stewart CN Jr (2003) Hybridization between transgenic Brassica napus L. and its wild relatives: B. rapa L., Raphanus raphanistrum L., Sinapis arvensis L., and Erucastrum gallicum (Willd.) O. E. Schulz. Theor Appl Genet 107:528–539PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Hee-Jong Woo
    • 1
    Email author
  • Myung-Ho Lim
    • 1
  • Kong-Sik Shin
    • 1
  • Bianca Martins
    • 2
  • Bum-Kyu Lee
    • 1
  • Hyun-Suk Cho
    • 1
  • Carol A. Mallory-Smith
    • 2
  1. 1.Biosafety Division, National Academy of Agricultural ScienceRural Development AdministrationSuwonSouth Korea
  2. 2.Department of Crop and Soil ScienceOregon State UniversityCorvallisUSA

Personalised recommendations