Advertisement

Biotechnology Letters

, Volume 35, Issue 9, pp 1469–1473 | Cite as

Prelog and anti-Prelog stereoselectivity of two ketoreductases from Candida glabrata

  • Ping Liang
  • Bin Qin
  • Mao Mu
  • Xin Zhang
  • Xian Jia
  • Song You
Original Research Paper

Abstract

Two ketoreductases from Candida glabrata were used for the asymmetric reduction of prochiral substituted acetophenones displayed different enantiopreference toward para-, meta-substituted and ortho-halogen substituted acetophenones with excellent enantioselectivity. Homology modeling and docking analysis were in conformity with this interested enantiopreference obtained from experimental tests. The reduction of a series of other substituted aryl ketones was also investigated using the two ketoreductases.

Keywords

Anti-Prelog rule Asymmetric reduction Biocatalysis Ketoreductase Molecular modeling 

Notes

Acknowledgments

This work was financially supported by National Scientific Major Program (2010ZX09301-012) and Shenyang Municipal Scientific and Technology Research Fund (F11-243-1-00).

Supplementary material

10529_2013_1228_MOESM1_ESM.doc (412 kb)
Supplementary material 1 (DOC 412 kb)

References

  1. Ankati H, Zhu D, Yang Y, Biehl ER, Hua L (2009) Asymmetric synthesis of both antipodes of β-hydroxy nitriles and β-hydroxy carboxylic acids via enzymatic reduction or sequential reduction/hydrolysis. J Org Chem 74:1658–1662PubMedCrossRefGoogle Scholar
  2. Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K (2012) Engineering the third wave of biocatalysis. Nature 485:185–194PubMedCrossRefGoogle Scholar
  3. Ernst M, Kaup B, Müller M, Bringer-Meyer S, Sahm H (2005) Enantioselective reduction of carbonyl compounds by whole-cell biotransformation, combining a formate dehydrogenase and a (R)-specific alcohol dehydrogenase. Appl Microbiol Biot 66:629–634CrossRefGoogle Scholar
  4. Hall Ml, Bommarius AS (2011) Enantioenriched compounds via enzyme-catalyzed redox reactions. Chem Rev 111:4088–4110PubMedCrossRefGoogle Scholar
  5. Hollmann F, Arends IWCE, Holtmann D (2011) Enzymatic reductions for the chemist. Green Chem 13:2285–2314CrossRefGoogle Scholar
  6. Huisman GW, Liang J, Krebber A (2010) Practical chiral alcohol manufacture using ketoreductases. Curr Opin Chem Biol 14:122–129PubMedCrossRefGoogle Scholar
  7. Kamitori S, Iguchi A, Ohtaki A, Yamada M, Kita K (2005) X-ray structures of nadph-dependent carbonyl reductase from Sporobolomyces salmonicolor provide insights into stereoselective reductions of carbonyl compounds. J Mol Biol 352:551–558PubMedCrossRefGoogle Scholar
  8. Liang J, Lalonde J, Borup B, Mitchell V, Mundorff E, Trinh N, Kochrekar DA, Nair Cherat R, Pai GG (2009a) Development of a biocatalytic process as an alternative to the (−)-DIP-Cl-mediated asymmetric reduction of a key intermediate of montelukast. Org Proc Res Dev 14:193–198CrossRefGoogle Scholar
  9. Liang J, Mundorff E, Voladri R, Jenne S, Gilson L, Conway A, Krebber A, Wong J, Huisman G, Truesdell S, Lalonde J (2009b) Highly enantioselective reduction of a small heterocyclic ketone: biocatalytic reduction of tetrahydrothiophene-3-one to the corresponding (R)-alcohol. Org Process Res Dev 14:188–192CrossRefGoogle Scholar
  10. Ma SK, Gruber J, Davis C, Newman L, Gray D, Wang A, Grate J, Huisman GW, Sheldon RA (2010) A green-by-design biocatalytic process for atorvastatin intermediate. Green Chem 12:81–86CrossRefGoogle Scholar
  11. Ma H, Yang L, Ni Y, Zhang J, Li C-X, Zheng G-W, Yang H, Xu J-H (2012) Stereospecific reduction of methyl o-chlorobenzoylformate at 300 g l−1 without additional cofactor using a carbonyl reductase mined from Candida glabrata. Adv Synth Catal 354:1765–1772CrossRefGoogle Scholar
  12. Olsen JG, Pedersen L, Christensen CL, Olsen O, Henriksen A (2008) Barley aldose reductase: structure, cofactor binding, and substrate recognition in the aldo/keto reductase 4C family. Proteins 71:1572–1581CrossRefGoogle Scholar
  13. Prelog V (1964) Specification of the stereospecificity of some oxido-reductases by diamond lattice sections. Pure Appl Chem 9:119CrossRefGoogle Scholar
  14. Shen N-D, Ni Y, Ma H-M, Wang L-J, Li C-X, Zheng G-W, Zhang J, Xu J-H (2012) Efficient synthesis of a chiral precursor for angiotensin-converting enzyme (ace) inhibitors in high space–time yield by a new reductase without external cofactors. Org Lett 14:1982–1985PubMedCrossRefGoogle Scholar
  15. Wildeman S, Sonke T, Schoemaker H, May O (2007) Biocatalytic reductions: from lab curiosity to “first choice”. Acc Chem Res 40:1260–1266PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Ping Liang
    • 1
  • Bin Qin
    • 1
  • Mao Mu
    • 1
  • Xin Zhang
    • 1
  • Xian Jia
    • 2
  • Song You
    • 1
  1. 1.School of Life Sciences & Biopharmaceutical SciencesShenyang Pharmaceutical UniversityShenyangChina
  2. 2.School of Pharmaceutical EngineeringShenyang Pharmaceutical UniversityShenyangChina

Personalised recommendations