Advertisement

Biotechnology Letters

, Volume 35, Issue 5, pp 735–741 | Cite as

Modification of histidine biosynthesis pathway genes and the impact on production of l-histidine in Corynebacterium glutamicum

  • Yongsong Cheng
  • Yunjiao Zhou
  • Lei Yang
  • Chenglin Zhang
  • Qingyang Xu
  • Xixian Xie
  • Ning Chen
Original Research Paper

Abstract

Histidine biosynthesis in Corynebacterium glutamicum is regulated not only by feedback inhibition by the first enzyme in the pathway, but also by repression control of the synthesis of the histidine enzymes. C. glutamicum histidine genes are located and transcribed in two unlinked loci, hisEG and hisDCB-orf1-orf2-hisHA-impA-hisFI. We constructed plasmid pK18hisDPtac to replace the native hisD promoter with the tac promoter, and overexpressed phosphoribosyl-ATP-pyrophosphohydrolase, encoded by hisE, and ATP-phosphoribosyltransferase, encoded by hisG. The l-histidine titer at 0.85 g l−1 was 80 % greater in the transformed bacterium and production of byproducts, l-alanine and l-tryptophan, was significantly decreased. However, accumulation of glutamic acid increased by 58 % (2.8 g l−1). This study represents the first attempt to substitute the histidine biosynthesis pathway promoter in the chromosome with a stronger promoter to increase histidine production.

Keywords

Corynebacterium glutamicum Gene overexpression l-Histidine Promoter substitution 

Notes

Acknowledgments

This work was supported by the Tianjin Committee of Science and Technology (Grant No. 12ZCZDSY01900, 12ZXCXSY05900), and by the Program for Changjiang Scholars and Innovative Research Team in Universities (IRT 1166).

Supplementary material

10529_2013_1138_MOESM1_ESM.doc (28 kb)
Supplementary material 1 (DOC 28 kb)
10529_2013_1138_MOESM2_ESM.docx (11 kb)
Supplementary Fig. 1 Supplementary material 2 (DOCX 10 kb)
10529_2013_1138_MOESM3_ESM.eps (80 kb)
Supplementary material 3 (EPS 80 kb)
10529_2013_1138_MOESM4_ESM.docx (11 kb)
Supplementary Fig. 2 Supplementary material 4 (DOCX 10 kb)
10529_2013_1138_MOESM5_ESM.eps (82 kb)
Supplementary material 5 (EPS 82 kb)
10529_2013_1138_MOESM6_ESM.docx (10 kb)
Supplementary Fig. 3 Supplementary material 6 (DOCX 10 kb)
10529_2013_1138_MOESM7_ESM.eps (69 kb)
Supplementary material 7 (EPS 68 kb)

References

  1. Araki K, Nakayama K (1974) Histidine production by Corynebacterium glutamicum mutants, multiresistant to analogs of histidine, tryptophan, purine and pyrimidine. Agric Biol Chem 38:2209–2218CrossRefGoogle Scholar
  2. Bongaerts J, Krämer M, Müller U et al (2001) Metabolic engineering for microbial production of aromatic amino acids and derived compounds. Metab Eng 3:289–300PubMedCrossRefGoogle Scholar
  3. Cheng LK, Wang J, Xu QY et al (2012) Effect of feeding strategy on l-tryptophan production by recombinant Escherichia coli. Ann Microbiol 62:1625–1634CrossRefGoogle Scholar
  4. Fu Y, Luo G, Spellberg BJ et al (2008) Gene overexpression/suppression analysis of candidate virulence factors of Candida albicans. Eukaryot Cell 7:483–492PubMedCrossRefGoogle Scholar
  5. Grant SG, Jessee J, Bloom FR et al (1990) Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci USA 87:4645–4649PubMedCrossRefGoogle Scholar
  6. Jakoby M, Ngoutou-Nkili CE, Burkovski A (1999) Construction and application of new Corynebacterium glutamicum vectors. Biotechnol Tech 13:437–441CrossRefGoogle Scholar
  7. Jung S, Chun JY, Yim SH et al (2010) Transcriptional regulation of histidine biosynthesis genes in Corynebacterium glutamicum. Can J Microbiol 56:178–187PubMedCrossRefGoogle Scholar
  8. Keilhauer C, Eggeling L, Sahm H (1993) Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-ilvN-ilvC operon. J Bacteriol 175:5595–5603PubMedGoogle Scholar
  9. Lange N, Steinbüchel A (2011) β-Carotene production by Saccharomyces cerevisiae with regard to plasmid stability and culture media. Appl Microbiol Biotechnol 91:1611–1622PubMedCrossRefGoogle Scholar
  10. Liebl W, Bayerl A, Schein B et al (1989) High efficiency electroporation of intact Corynebacterium glutamicum cells. FEMS Microbiol Lett 65:299–303CrossRefGoogle Scholar
  11. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression date using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408PubMedCrossRefGoogle Scholar
  12. Mizukami T, Hamu A, Ikeda M et al (1994) Cloning of the ATP phosphoribosyl transferase gene of Corynebacterium glutamicum and application of the gene to l-histidine production. Biosci Biotechnol Biochem 58:635–638PubMedCrossRefGoogle Scholar
  13. Peters-Wendisch PG, Wendisch VF, Paul S et al (1997) Pyruvate carboxylase as an anaplerotic enzyme in Corynebacterium glutamicum. Microbiology 143:1095–1103CrossRefGoogle Scholar
  14. Schäfer A, Tauch A, Jäger W et al (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73PubMedCrossRefGoogle Scholar
  15. Tauch A, Kirchner O, Löffler B et al (2002) Efficient electrotransformation of Corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1. Curr Microbiol 45:362–367PubMedCrossRefGoogle Scholar
  16. Verde P, Frunzio R, Dinocera PP et al (1981) Identification, nucleotide sequence and expression of the regulatory region of the histidine operon of Escherichia coli K-12. Nucleic Acids Res 9:2075–2086PubMedCrossRefGoogle Scholar
  17. Vitreschak AG, Lyubetskaya EV, Shirshin MA et al (2004) Attenuation regulation of amino acid biosynthetic operons in proteobacteria: comparative genomics analysis. FEMS Microbiol Lett 234:357–370PubMedCrossRefGoogle Scholar
  18. Zhang Y, Shang XL, Deng AH et al (2012) Genetic and biochemical characterization of Corynebacterium glutamicum ATP phosphoribosyltransferase and its three mutants resistant to feedback inhibition by histidine. Biochimie 94:829–838PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Yongsong Cheng
    • 1
  • Yunjiao Zhou
    • 1
  • Lei Yang
    • 1
  • Chenglin Zhang
    • 1
  • Qingyang Xu
    • 1
  • Xixian Xie
    • 1
  • Ning Chen
    • 1
    • 2
  1. 1.College of Biotechnology, Tianjin University of Science & Technology, Key Laboratory of Industrial Microbiology of Education MinistryTianjinChina
  2. 2.Metabolic Engineering LaboratoryCollege of Biotechnology, Tianjin University of Science & TechnologyTianjinChina

Personalised recommendations