Advertisement

Biotechnology Letters

, Volume 35, Issue 2, pp 225–231 | Cite as

Combinatorial evaluation of laccase-mediator system in the oxidation of veratryl alcohol

  • Troy M. Larson
  • Amber M. Anderson
  • Joseph O. RichEmail author
Original Research Paper

Abstract

Laccases play an important role in the biological break down of lignin and have great potential in the deconstruction of lignocellulosic feedstocks. We examined 16 laccases, both commercially prepared and crude extracts, for their ability to oxidize veratryl alcohol in the presence of various solvents and mediators. Screening revealed complete conversion of veratryl alcohol to veratraldehyde catalyzed by a crude preparation of the laccase from Trametes versicolor ATCC 11235 and the mediator TEMPO in 20 % (v/v) tert-butanol.

Keywords

Laccase Laccase mediator system Mediator Veratraldehyde Veratryl alcohol oxidation 

Supplementary material

10529_2012_1078_MOESM1_ESM.docx (185 kb)
Supplementary material 1 (DOCX 184 kb)

References

  1. Baiocco P, Barreca AN, Fabbrini M, Galli C, Gentili P (2003) Promoting laccase activity towards non-phenolic substrates: a mechanistic investigation with some laccase-mediator systems. Org Biomol Chem 1:191–197PubMedCrossRefGoogle Scholar
  2. Baldrian P (2006) Fungal laccases—occurrence and properties. FEMS Microbiol Rev 2:215–242CrossRefGoogle Scholar
  3. Bourbonnais R, Paice MG (1990) Oxidation of nonphenolic substrates—an expanded role for laccase in lignin biodegradation. FEBS Lett 267:99–102PubMedCrossRefGoogle Scholar
  4. Chakroun H, Mechichi T, Martinez MJ, Dhouib A, Sayadi S (2010) Purification and characterization of a novel laccase from the ascomycete Trichoderma atroviride: application on bioremediation of phenolic compounds. Proc Biochem 43:507–513CrossRefGoogle Scholar
  5. d’Acunzo F, Galli C, Masci B (2002) Oxidation of phenols by laccase and laccase-mediator systems: solubility and steric issues. Eur J Biochem 269:5330–5335PubMedCrossRefGoogle Scholar
  6. Fabbrini M, Galli C, Gentili P (2002) Comparing the catalytic efficiency of some mediators of laccase. J Mol Catal B Enzym 16:231–240CrossRefGoogle Scholar
  7. Fahraeus G, Reinhammar B (1967) Large-scale production and purification of laccase from cultures of the fungus Polyporus versicolor and some properties of laccase A. Acta Chem Scand 21:2367–2378PubMedCrossRefGoogle Scholar
  8. Gianfreda L, Xu F, Bollag JM (1999) Laccases: a useful group of oxidoreductase enzymes. Bioremediat J 3:1–26CrossRefGoogle Scholar
  9. Hilden K, Hakala TK, Lundell T (2009) Thermotolerant and thermostable laccases. Biotechnol Lett 31:1117–1128PubMedCrossRefGoogle Scholar
  10. Messerschmidt A, Huber R (1990) The blue oxidases, ascorbate oxidase, laccase and ceruloplasmin. Modeling and structural relationships. Eur J Biochem 2:341–352CrossRefGoogle Scholar
  11. Ride JP (1980) Physiol Plant Pathol 16:187–196CrossRefGoogle Scholar
  12. Riva S (2006) Laccases: blue enzymes for green chemistry. Trends Biotechnol 5:219–226CrossRefGoogle Scholar
  13. Thurston CF (1994) The structure and function of fungal laccases. Microbiology 140:19–26CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht(outside the USA) 2012

Authors and Affiliations

  • Troy M. Larson
    • 1
  • Amber M. Anderson
    • 1
  • Joseph O. Rich
    • 1
    Email author
  1. 1.U.S. Department of Agriculture, Renewable Product Technology Research Unit, National Center for Agricultural Utilization ResearchAgricultural Research ServicePeoriaUSA

Personalised recommendations