Biotechnology Letters

, Volume 35, Issue 2, pp 143–152 | Cite as

Cell-free protein synthesis: the state of the art

Review

Abstract

Cell-free protein synthesis harnesses the synthetic power of biology, programming the ribosomal translational machinery of the cell to create macromolecular products. Like PCR, which uses cellular replication machinery to create a DNA amplifier, cell-free protein synthesis is emerging as a transformative technology with broad applications in protein engineering, biopharmaceutical development, and post-genomic research. By breaking free from the constraints of cell-based systems, it takes the next step towards synthetic biology. Recent advances in reconstituted cell-free protein synthesis (Protein synthesis Using Recombinant Elements expression systems) are creating new opportunities to tailor the reactions for specialized applications including in vitro protein evolution, printing protein microarrays, isotopic labeling, and incorporating nonnatural amino acids.

Keywords

Cell-free translation Protein engineering Protein synthesis PURE expression Synthetic biology 

References

  1. Bayburt TH, Sligar SG (2010) Membrane protein assembly into Nanodiscs. FEBS Lett 584:1721–1727PubMedCrossRefGoogle Scholar
  2. Beckert B, Masquida B (2011) Synthesis of RNA by in vitro transcription. Methods Mol Biol 703:29–41PubMedCrossRefGoogle Scholar
  3. Berrade L, Garcia AE, Camarero JA (2011) Protein microarrays: novel developments and applications. Pharm Res 28:1480–1499PubMedCrossRefGoogle Scholar
  4. Bremer H, Dennis PP (2008) Chapter 5.2.3, Modulation of chemical composition and other parameters of the cell at different exponential growth rates. In: Böck A, Curtiss R III, Kaper JB, Karp PD, Neidhardt FC, Nyström T, Slauch JM, Squires CL, Ussery D (eds) EcoSalEscherichia coli and Salmonella: cellular and molecular biology. http://www.ecosal.org. ASM Press, Washington, DC
  5. Bundy BC, Swartz JR (2010) Site-specific incorporation of p-propargyloxyphenylalanine in a cell-free environment for direct protein–protein click conjugation. Bioconjug Chem 21:255–263PubMedCrossRefGoogle Scholar
  6. Calhoun KA, Swartz JR (2007) Energy systems for ATP regeneration in cell-free protein synthesis reactions. Methods Mol Biol 375:3–17PubMedGoogle Scholar
  7. Cenatiempo Y, Twardowski T, Redfield B, Reid BR, Dauerman H, Weissbach H, Brot N (1983) Simplified in vitro system for study of eukaryotic mRNA translation by measuring di- and tripeptide formation. Proc Natl Acad Sci USA 80:3223–3226PubMedCrossRefGoogle Scholar
  8. de Graaf AJ, Kooijman M, Hennink WE, Mastrobattista E (2009) Nonnatural amino acids for site-specific protein conjugation. Bioconjug Chem 20:1281–1295PubMedCrossRefGoogle Scholar
  9. Doi Y, Ohtsuki T, Shimizu Y, Ueda T, Sisido M (2007) Elongation factor Tu mutants expand amino acid tolerance of protein biosynthesis system. J Am Chem Soc 129:14458–14462PubMedCrossRefGoogle Scholar
  10. Du L, Gao R, Forster AC (2009) Engineering multigene expression in vitro and in vivo with small terminators for T7 RNA polymerase. Biotechnol Bioeng 104:1189–1196PubMedCrossRefGoogle Scholar
  11. Ederth J, Mandava CS, Dasgupta S, Sanyal S (2009) A single-step method for purification of active His-tagged ribosomes from a genetically engineered Escherichia coli. Nucleic Acids Res 37:e15PubMedCrossRefGoogle Scholar
  12. Ge X, Luo D, Xu J (2011) Cell-free protein expression under macromolecular crowding conditions. PLoS One 6:e28707PubMedCrossRefGoogle Scholar
  13. Goerke AR, Swartz JR (2008) Development of cell-free protein synthesis platforms for disulfide bonded proteins. Biotechnol Bioeng 99:351–367PubMedCrossRefGoogle Scholar
  14. Goerke AR, Swartz JR (2009) High-level cell-free synthesis yields of proteins containing site-specific non-natural amino acids. Biotechnol Bioeng 102:400–416PubMedCrossRefGoogle Scholar
  15. Goto Y, Suga H (2012) Flexizymes as a tRNA acylation tool facilitating genetic code reprogramming. Methods Mol Biol 848:465–478PubMedCrossRefGoogle Scholar
  16. Goto Y, Katoh T, Suga H (2011) Flexizymes for genetic code reprogramming. Nat Protoc 6:779–790PubMedCrossRefGoogle Scholar
  17. Hartman MC, Josephson K, Lin CW, Szostak JW (2007) An expanded set of amino acid analogs for the ribosomal translation of unnatural peptides. PLoS One 2:e972PubMedCrossRefGoogle Scholar
  18. Hodgman CE, Jewett MC (2012) Cell-free synthetic biology: thinking outside the cell. Metab Eng 14:261–269PubMedCrossRefGoogle Scholar
  19. Jewett MC, Swartz JR (2004) Mimicking the Escherichia coli cytoplasmic environment activates long-lived and efficient cell-free protein synthesis. Biotechnol Bioeng 86:19–26PubMedCrossRefGoogle Scholar
  20. Jewett MC, Calhoun KA, Voloshin A, Wuu JJ, Swartz JR (2008) An integrated cell-free metabolic platform for protein production and synthetic biology. Mol Syst Biol 4:220PubMedCrossRefGoogle Scholar
  21. Johansson M, Bouakaz E, Lovmar M, Ehrenberg M (2008) The kinetics of ribosomal peptidyl transfer revisited. Mol Cell 30:589–598PubMedCrossRefGoogle Scholar
  22. Johnson DB, Xu J, Shen Z, Takimoto JK, Schultz MD, Schmitz RJ, Xiang Z, Ecker JR, Briggs SP, Wang L (2011) RF1 knockout allows ribosomal incorporation of unnatural amino acids at multiple sites. Nat Chem Biol 7:779–786PubMedCrossRefGoogle Scholar
  23. Kai L, Roos C, Haberstock S, Proverbio D, Ma Y, Junge F, Karbyshev M, Dötsch V, Bernhard F (2012) Systems for the cell-free synthesis of proteins. Methods Mol Biol 800:201–225PubMedCrossRefGoogle Scholar
  24. Kalmbach R, Chizhov I, Schumacher MC, Friedrich T, Bamberg E, Engelhard M (2007) Functional cell-free synthesis of a seven helix membrane protein: in situ insertion of bacteriorhodopsin into liposomes. Mol Biol 371:639–648CrossRefGoogle Scholar
  25. Katayama Y, Shimokata K, Suematsu M, Ogura T, Tsukihara T, Yoshikawa S, Shimada H (2010) Cell-free synthesis of cytochrome c oxidase, a multicomponent membrane protein. J Bioenerg Biomembr 42:235–240PubMedCrossRefGoogle Scholar
  26. Kigawa T, Yamaguchi-Nunokawa E, Kodama K, Matsuda T, Yabuki T, Matsuda N, Ishitani R, Nureki O, Yokoyama S (2002) Selenomethionine incorporation into a protein by cell-free synthesis. J Struct Funct Genomics 2:29–35PubMedCrossRefGoogle Scholar
  27. Kim HC, Kim DM (2009) Methods for energizing cell-free protein synthesis. J Biosci Bioeng 108:1–4PubMedCrossRefGoogle Scholar
  28. Kim TW, Oh IS, Keum JW, Kwon YC, Byun JY, Lee KH, Choi CY, Kim DM (2007) Prolonged cell-free protein synthesis using dual energy sources: combined use of creatine phosphate and glucose for the efficient supply of ATP and retarded accumulation of phosphate. Biotechnol Bioeng 96:1510–1515CrossRefGoogle Scholar
  29. Kim HC, Kim TW, Park CG, Oh IS, Park K, Kim DM (2008) Continuous cell-free protein synthesis using glycolytic intermediates as energy sources. J Microbiol Biotechnol 18:885–888PubMedGoogle Scholar
  30. Kim HC, Kim TW, Kim DM (2011) Prolonged production of proteins in a cell-free protein synthesis system using polymeric carbohydrates as an energy source. Process Biochem 46:1366–1369CrossRefGoogle Scholar
  31. Knapp KG, Goerke AR, Swartz JR (2007) Cell-free synthesis of proteins that require disulfide bonds using glucose as an energy source. Biotechnol Bioeng 97:901–908PubMedCrossRefGoogle Scholar
  32. Kovtun O, Mureev S, Jung W, Kubala MH, Johnston W, Alexandrov K (2011) Leishmania cell-free protein expression system. Methods 55:58–64PubMedCrossRefGoogle Scholar
  33. Lee KY, Lee KH, Park JW, Kim DM (2012) Flexible programming of cell-free protein synthesis using magnetic bead-immobilized plasmids. PLoS One 7:e34429PubMedCrossRefGoogle Scholar
  34. LeWinter MM, Granzier H (2010) Cardiac titin: a multifunctional giant. Circulation 121:2137–2145PubMedCrossRefGoogle Scholar
  35. Ling J, Reynolds N, Ibba M (2009) Aminoacyl-tRNA synthesis and translational quality control. Annu Rev Microbiol 63:61–78PubMedCrossRefGoogle Scholar
  36. Liu CC, Schultz PG (2010) Adding new chemistries to the genetic code. Annu Rev Biochem 79:413–444PubMedCrossRefGoogle Scholar
  37. Loscha KV, Herlt AJ, Qi R, Huber T, Ozawa K, Otting G (2012) Multiple-site labeling of proteins with unnatural amino acids. Angew Chem Int Ed Engl 51:2243–2246PubMedCrossRefGoogle Scholar
  38. Lyukmanova EN, Shenkarev ZO, Khabibullina NF, Kopeina GS, Shulepko MA, Paramonov AS, Mineev KS, Tikhonov RV, Shingarova LN, Petrovskaya LE, Dolgikh DA, Arseniev AS, Kirpichnikov MP (2012) Lipid-protein nanodiscs for cell-free production of integral membrane proteins in a soluble and folded state: comparison with detergent micelles, bicelles and liposomes. Biochim Biophys Acta 1818:349–358PubMedCrossRefGoogle Scholar
  39. Matsuda T, Koshiba S, Tochio N, Seki E, Iwasaki N, Yabuki T, Inoue M, Yokoyama S, Kigawa T (2007) Improving cell-free protein synthesis for stable-isotope labeling. J Biomol NMR 37:225–229PubMedCrossRefGoogle Scholar
  40. Merrifield B (1997) Concept and early development of solid-phase peptide synthesis. Methods Enzymol 289:3–13PubMedCrossRefGoogle Scholar
  41. Mikami S, Kobayashi T, Masutani M, Yokoyama S, Imataka H (2008) A human cell-derived in vitro coupled transcription/translation system optimized for production of recombinant proteins. Protein Expr Purif 62:190–198PubMedCrossRefGoogle Scholar
  42. Mureev S, Kovtun O, Nguyen UT, Alexandrov K (2009) Species-independent translational leaders facilitate cell-free expression. Nat Biotechnol 27:747–752PubMedCrossRefGoogle Scholar
  43. Nand A, Gautam A, Pérez JB, Merino A, Zhu J (2012) Emerging technology of in situ cell free expression protein microarrays. Protein Cell 3:84–88PubMedCrossRefGoogle Scholar
  44. Nilsson BL, Soellner MB, Raines RT (2005) Chemical synthesis of proteins. Annu Rev Biophys Biomol Struct 34:91–118PubMedCrossRefGoogle Scholar
  45. Ohashi H, Shimizu Y, Ying BW, Ueda T (2007) Efficient protein selection based on ribosome display system with purified components. Biochem Biophys Res Commun 352:270–276PubMedCrossRefGoogle Scholar
  46. Okano T, Matsuura T, Kazuta Y, Suzuki H, Yomo T (2012) Cell-free protein synthesis from a single copy of DNA in a glass microchamber. Lab Chip 12:2704–2711PubMedCrossRefGoogle Scholar
  47. Ozawa K, Dixon NE, Otting G (2005) Cell-free synthesis of 15N-labeled proteins for NMR studies. IUBMB Life 57:615–622PubMedCrossRefGoogle Scholar
  48. Ozawa K, Loscha KV, Kuppan KV, Loh CT, Dixon NE, Otting G (2012) High-yield cell-free protein synthesis for site-specific incorporation of unnatural amino acids at two sites. Biochem Biophys Res Commun 418:652–656PubMedCrossRefGoogle Scholar
  49. Plückthun A (2012) Ribosome display: a perspective. Methods Mol Biol 805:3–28PubMedCrossRefGoogle Scholar
  50. Ryabova LA, Vinokurov LM, Shekhovtsova EA, Alakhov YB, Spirin AS (1995) Acetyl phosphate as an energy source for bacterial cell-free translation systems. Anal Biochem 226:184–186PubMedCrossRefGoogle Scholar
  51. Schneider B, Junge F, Shirokov VA, Durst F, Schwarz D, Dötsch V, Bernhard F (2010) Membrane protein expression in cell-free systems. Methods Mol Biol 601:165–186PubMedCrossRefGoogle Scholar
  52. See YP, Burrow GN (1979) Synthesis of high molecular weight thyroglobulin peptides by thyroid polysome in vitro. Biochim Biophys Acta 561:215–222PubMedCrossRefGoogle Scholar
  53. Shimizu Y, Ueda T (2010) PURE technology. Methods Mol Biol 607:11–21PubMedCrossRefGoogle Scholar
  54. Shimizu Y, Kanamori T, Ueda T (2005) Protein synthesis by pure translation systems. Methods 36:299–304PubMedCrossRefGoogle Scholar
  55. Sousa R, Mukherjee S (2003) T7 RNA polymerase. Prog Nucleic Acid Res Mol Biol 73:1–41PubMedCrossRefGoogle Scholar
  56. Stevenson BJ, Liu JW, Kuchel PW, Ollis DL (2012) Fermentative glycolysis with purified Escherichia coli enzymes for in vitro ATP production and evaluating an engineered enzyme. J Biotechnol 157:113–123PubMedCrossRefGoogle Scholar
  57. Su XC, Loh CT, Qi R, Otting G (2011) Suppression of isotope scrambling in cell-free protein synthesis by broadband inhibition of PLP enzymes for selective 15N-labelling and production of perdeuterated proteins in H2O. J Biomol NMR 50:35–42PubMedCrossRefGoogle Scholar
  58. Suchanek M, Radzikowska A, Thiele C (2005) Photo-leucine and photo-methionine allow identification of protein–protein interactions. Nat Methods 2:261–267PubMedCrossRefGoogle Scholar
  59. Swartz JR (2012) Transforming biochemical engineering with cell-free biology. AIChE J 58:5–13CrossRefGoogle Scholar
  60. Ueda T (2008) Chapter 2, The constructive approach for cell-free translation. In: Spirin AS, Swartz JR (eds) Cell-free protein synthesis: methods and protocols. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  61. Ueda T, Kanamori T, Ohashi H (2010) Ribosome display with the PURE technology. Methods Mol Biol 607:219–225PubMedCrossRefGoogle Scholar
  62. Wang Y, Zhang YH (2009) Cell-free protein synthesis energized by slowly-metabolized maltodextrin. BMC Biotechnol 9:58PubMedCrossRefGoogle Scholar
  63. Wang HH, Huang PY, Xu G, Haas W, Marblestone A, Li J, Gygi S, Forster A, Jewett MC, Church GM (2012) Multiplexed in vivo His-tagging of enzyme pathways for in vitro single-pot multi-enzyme catalysis. ACS Synth Biol 1:43–52PubMedCrossRefGoogle Scholar
  64. Watts RE, Forster AC (2012) Update on pure translation display with unnatural amino acid incorporation. Methods Mol Biol 805:349–365PubMedCrossRefGoogle Scholar
  65. Yadavalli SS, Ibba M (2012) Quality control in aminoacyl-tRNA synthesis its role in translational fidelity. Adv Protein Chem Struct Biol 86:1–43PubMedCrossRefGoogle Scholar
  66. Yin G, Garces ED, Yang J, Zhang J, Tran C, Steiner AR, Roos C, Bajad S, Hudak S, Penta K, Zawada J, Pollitt S, Murray CJ (2012) Aglycosylated antibodies and antibody fragments produced in a scalable in vitro transcription-translation system. mAbs 4:217–225CrossRefGoogle Scholar
  67. Yokoyama J, Matsuda T, Koshiba S, Tochio N, Kigawa T (2011) A practical method for cell-free protein synthesis to avoid stable isotope scrambling and dilution. Anal Biochem 411:223–229PubMedCrossRefGoogle Scholar
  68. Zawada JF, Yin G, Steiner AR, Yang J, Naresh A, Roy SM, Gold DS, Heinsohn HG, Murray CJ (2011) Microscale to manufacturing scale-up of cell-free cytokine production—a new approach for shortening protein production development timelines. Biotechnol Bioeng 108:1570–1578PubMedCrossRefGoogle Scholar
  69. Zhou Y, Asahara H, Gaucher EA, Chong S (2012) Reconstitution of translation from Thermus thermophilus reveals a minimal set of components sufficient for protein synthesis at high temperatures and functional conservation of modern and ancient translation components. Nucleic Acids Res 40:7932–7945PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Division of Environmental and Biomolecular SystemsInstitute for Environmental Health, Oregon Health and Science UniversityBeavertonUSA

Personalised recommendations