Biotechnology Letters

, Volume 34, Issue 12, pp 2299–2305 | Cite as

Photocatalytic and antimicrobial properties of surgical implant coatings of titanium dioxide deposited though cathodic arc evaporation

  • Mirjam Lilja
  • Johan Forsgren
  • Ken Welch
  • Maria Åstrand
  • Håkan EngqvistEmail author
  • Maria StrømmeEmail author
Original Research Paper


Nanostructured crystalline titanium dioxide coatings deposited by cathodic arc evaporated on titanium grade five medical implant substrates were demonstrated to exhibit UV-induced photocatalytic activity that can be utilized to provide bactericidal effects against Staphylococcus epidermidis. The photocatalytic activity of the coatings was confirmed via degradation of Rhodamine B under UV illumination. A 90 % reduction of viable bacteria was achieved in a clinically suitable time of only 2 min with a UV dose of 2.4 J delivered at 365 nm. These results are encouraging for the development of antimicrobial surfaces in orthopedics and dentistry in order to prevent or treat post-surgical infections.

Purpose of work

To assess the possibility of employing photocatalysis for elimination of S. epidermidis, known to cause medical device related infections, under short enough times to be clinically useful on an implant surface produced with a technique that is suitable for mass production.


Antimicrobial activity Coating Infection prevention Photocatalysis Surgical implants Titanium dioxide 



The Swedish Science Council, The Carl Trygger Foundation, The Göran Gustafsson Foundation, The Swedish Foundation for Strategic Research and Vinnova are acknowledged for financially supporting our research.


  1. Åberg J, Brohede U, Mihranyan A, Strømme M, Engqvist H (2009) Bisphosphonate incorporation in surgical implant coatings by fast loading and co-precipitation at low drug concentrations. J Mater Sci Mater Med 20:2053–2061CrossRefPubMedGoogle Scholar
  2. Brohede U, Forsgren J, Roos S, Mihranyan A, Engqvist H, Strømme M (2009a) Multifunctional implant coatings providing possibilities for fast antibiotics loading with subsequent slow release. J Mater Sci Mater Med 20:1859–1867CrossRefPubMedGoogle Scholar
  3. Brohede U, Forsgren J, Mihranyan A, Engqvist H, Strømme M (2009b) Fast loading, slow release—a new strategy for incorporating antibiotics to hydroxyapatite. Key Eng Mater 396–398:523–526Google Scholar
  4. Brohede U, Zhao S, Lindberg F, Mihranyan A, Forsgren J, Strømme M, Engqvist H (2009c) A novel graded bioactive high adhesion implant coating. Appl Surf Sci 225:7723–7728CrossRefGoogle Scholar
  5. Brudnik A, Bucko M, Radecka M, Trenczek-Zajac A, Zakrzewska K (2008) Microstructure and optical properties of photoactive TiO2:N thin films. Vacuum 82:936–941CrossRefGoogle Scholar
  6. Brunette DM, Tengvall P, Textor M, Thomsen P (2001) Titanium in medicine. Springer, BerlinCrossRefGoogle Scholar
  7. Brunski JB, Puleo DA, Nanci A (2000) Biomaterials and biomechanics of oral and maxillofacial implants: current status and future developments. Int J Oral Max Implant 15:15–46Google Scholar
  8. Cai R, Hashimoto K, Itoh K, Kubota Y, Fujishima A (1991) Photokilling of malignant cells with ultrafine TiO2 powder. Bull Chem Soc Jpn 64:1268–1273CrossRefGoogle Scholar
  9. Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32:33–177CrossRefGoogle Scholar
  10. Choi JY, Kim KH, Choy KC, Oh KT, Kim KN (2007) Photocatalytic antibacterial effect of TiO2 film formed on Ti and TiAg exposed to Lactobacillus acidophilus. J Biomed Mater Res Pt B Appl Biomater 80:353–359CrossRefGoogle Scholar
  11. Choi JY, Chung CJ, Oh KT, Choi YJ, Kim KH (2009) Photocatalytic antibacterial effect of TiO2 film on TiAg on Streptococcus mutans. Angle Orthod 79:528–532PubMedGoogle Scholar
  12. Chong MN, Jin B, Chow CWK, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44(10):2997–3027CrossRefPubMedGoogle Scholar
  13. Collinge CA, Goll G, Seligson D, Easley KJ (1994) Pin tract infections: silver vs. uncoated pins. Orthopedics 17:445–448PubMedGoogle Scholar
  14. Cooper VS, Bennett AF, Lenski RE (2001) Evolution of thermal dependence of growth rate of E. coli populations during 20,000 generations in a constant environment. Evolution 55:889–896CrossRefPubMedGoogle Scholar
  15. Costerton JW, Montanaro L, Arciola CR (2005) Biofilm in implant infections: its production and regulation. Int J Artif Organs 11:1062–1068Google Scholar
  16. Crawford GA, Chawla N, Das K, Bose S, Bandyopadhyay A (2007) Microstructure and deformation behavior of bioactive TiO2 coatings. Acta Biomater 3:359–367CrossRefPubMedGoogle Scholar
  17. Diebold U (2003) The surface of titanium dioxide. Surf Sci Rep 48:53–229CrossRefGoogle Scholar
  18. Ewald A, Glueckermann SK, Thull R, Gbureck U (2006) Antimicrobial titanium/silver PVD coatings on titanium. Biomed Eng 5:22Google Scholar
  19. Forsgren J, Brohede U, Engqvist H, Strømme M (2011a) Co-loading of bisphosphonates and antibiotics to a biomimetic hydroxyapatite coating. Biotechnol Lett 33:1265–1268CrossRefPubMedGoogle Scholar
  20. Forsgren J, Brohede U, Piskounova S, Mihranyan A, Larsson S, Strømme M, Engqvist H (2011b) In vivo evaluation of functionalized biomimetic hydroxyapatite for local delivery of active agents. J Biomat Nanobiotech 2:149–154CrossRefGoogle Scholar
  21. Fox MA, Dulay MT (1993) Heterogenous photocatalysis. Chem Rev 93:341–357CrossRefGoogle Scholar
  22. Gallardo-Moreno AM, Pacha-Olivenza MA, Fernández-Calderón MC, Pérez-Giraldo C, Bruque JM, González-Martín ML (2010) Bactericidal behaviour of Ti6Al4 V surfaces after exposure to UV-C light. Biomaterials 31:5159–5168CrossRefPubMedGoogle Scholar
  23. Gamage J, Zhang Z (2010) Applications of photocatalytic disinfection. Int J Photoenergy 2010, Article ID 764870Google Scholar
  24. Gonzalez RJ, Tarloff JB (2001) Evaluation of hepatic subcellular fractions for Alamar blue and MTT reductase activity. Toxicol In Vitro 15:257–259CrossRefPubMedGoogle Scholar
  25. Gristina AG (1994) Implant failure and the immuno-incompetent fibro-inflammatory zone. Clin Orthop Relat Res 298:106–118PubMedGoogle Scholar
  26. Guinier A (1994) Diffraction by an imperfect crystals lattice in X-ray diffraction in crystals. Dover Publications Inc, New York, p 378Google Scholar
  27. Heidenau F, Mittelmeier W, Detsch R, Haenle M, Stenzel F, Ziegler G (2005) Novel antibacterial titania coating: metal ion toxicity and in vitro surface colonization. J Mater Sci Mater Med 16:883–888CrossRefPubMedGoogle Scholar
  28. Hossain MF, Biswas S, Takahashi T, Kubota Y, Fujishima A (2008) Influence of direct current power on the photocatalytic activity of facing target sputtered TiO2 thin films. Thin Solid Films 517:1091–1095CrossRefGoogle Scholar
  29. Kasuga T, Kondo H, Nogami M (2002) Apatite formation on TiO2 in simulated body fluid. J Cryst Growth 235:235–240CrossRefGoogle Scholar
  30. Kleiman A, Marquez A (2007) Anatase TiO2 films obtained by cathodic arc deposition. Surf Coat Technol 201:6358–6362CrossRefGoogle Scholar
  31. Konstantinou IK, Sakellarides TM, Sakkas VA, Albanis TA (2001) Photocatalytic degradation of selected s-triazine herbicides and organophosphorus insecticides over aqueous TiO2 suspensions. Environ Sci Technol 35:398–405CrossRefPubMedGoogle Scholar
  32. Lavernia CJ, Drakeford MK, Tsao AK, Gittelsohn A, Krackow KA, Hungerford DS (1995) Revision and primary hip and knee arthroplasty—a cost analysis. Clin Orthop Relat Res 11:136–141Google Scholar
  33. Lilja M, Genvad A, Åstrand M, Strømme M, Engqvist H (2011) Influence of microstructure and chemical composition of sputter deposited TiO2 thin films on in vitro bioactivity. J Mater Sci Mater Med 22:2727–2734CrossRefPubMedGoogle Scholar
  34. Lilja M, Welch K, Åstrand M, Engqvist H, Strømme M (2012) Effect of deposition parameters on the photocatalytic activity and bioactivity of TiO2 thin films deposited by vacuum arc on Ti–6Al–4V substrates. J Biomed Mater Res B 100B:1078–1085CrossRefGoogle Scholar
  35. Mahan J, Seligson D, Henry SL, Hynes P, Dobbins J (1991) Factors in pin tract infections. Orthopedics 14:305–308PubMedGoogle Scholar
  36. Mihranyan A, Forsgren J, Strømme M, Engqvist H (2009) Assessing surface area evolution during biomimetic growth of hydroxyapatite coatings. Langmuir 25:1292–1295CrossRefPubMedGoogle Scholar
  37. Miyagi T, Kamei M, Mitsuhashi T, Ishigaki T, Yamazaki A (2004) Charge separation at the rutile/anatase interface: a dominant factor of photocatalytic activity. Chem Phys Lett 390(4–6):399–402CrossRefGoogle Scholar
  38. Navarro M, Michiardi A, Castaño O, Planell JA (2008) Biomaterials in orthopaedics. J R Soc Interface 5:1137–1158CrossRefPubMedGoogle Scholar
  39. Panda AB, Laha P, Harish K et al (2010) Study of bactericidal efficiency of magnetron sputtered TiO2 films deposited at varying oxygen partial pressure. Surf Coat Technol 205:1611–1617CrossRefGoogle Scholar
  40. Piskounova S, Forsgren J, Brohede U, Engqvist H, Strømme M (2009) In vitro characterization of bioactive titanium dioxide/hydroxyapatite surfaces functionalized with BMP-2. J Biomed Mater Res B 91B(2):780–787CrossRefGoogle Scholar
  41. Pulido L, Ghanem E, Joshi A, Purtill JJ, Parvizi J (2008) Periprosthetic joint infection: the incidence, timing and predisposing factors. Clin Orthop Relat Res 466:1710–1715CrossRefPubMedGoogle Scholar
  42. Ratkowsky DA, Olley J, McMeekin TA, Ball A (1981) Relationship between temperature and growth rate of bacterial cultures. J Bacteriol 149:1–5Google Scholar
  43. Ratkowsky DA, Lowry RK, McMeekin TA, Chander RE (1983) Model for bacterial culture growth rate throughout the entire biokinetic temperature range. J Bacteriol 154:1222–1226PubMedGoogle Scholar
  44. Riley DJ, Bavastrello V, Covani U, Barone A, Nicolini C (2005) An in vitro study of the sterilization of titanium dental implants using low intensity UV-radiation. Dent Mater 21:756–760CrossRefPubMedGoogle Scholar
  45. Rodriguez-Martinez JM, Pascual A (2006) Antimicrobial resistance in bacterial biofilms. Rev Med Microbiol 17:65–75CrossRefGoogle Scholar
  46. Sato T, Taya M (2006) Enhancement of phage inactivation using photocatalytic titanium dioxide particles with different crystalline structures. Biochem Eng J 28(3):303–308CrossRefGoogle Scholar
  47. Shiraishi K, Koseki H, Tsurumoto T, Baba K, Naito M, Nakayamac K, Shindoa H (2008) Antibacterial metal implant with a TiO2-conferred photocatalytic bactericidal effect against Staphylococcus aureus. Surf Interface Anal 41:17–22CrossRefGoogle Scholar
  48. Sirghi L, Hatanaka Y (2003) Hydrophilicity of amorphous TiO2 ultra-thin films. Surf Sci 530:323–327CrossRefGoogle Scholar
  49. Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138CrossRefPubMedGoogle Scholar
  50. Temple J, Santy J (2004) Pin site care for preventing infections associated with external bone fixators and pins. Cochrane DB Syst Rev 1:CD004551Google Scholar
  51. Uzunova-Bujnova M, Dimitrov D, Radev D, Bojinova A, Todorovsky D (2008) Effect of the mechanoactivation on the structure, sorption and photocatalytic properties of titanium dioxide. Mater Chem Phys 110:291–298CrossRefGoogle Scholar
  52. Welch K, Cai Y, Engqvist H, Strømme M (2010) Dental adhesives with bioactive and on-demand bactericidal properties. Dent Mater 26:491–499CrossRefPubMedGoogle Scholar
  53. Welch K, Cai Y, Strømme M (2012) A method for quantitative determination of biofilm viability. J Func Biomater 3:418–431CrossRefGoogle Scholar
  54. Zhao L, Chu PK, Zhang Y, Wu Z (2009) Review antibacterial coatings on titanium implants. J Biomed Mater Res 91B:470–480CrossRefGoogle Scholar
  55. Zhu L, Ye X, Tang G et al (2006) Corrosion test, cell behavior test, and in vivo study of gradient TiO2 layers produced by compound electrochemical oxidation. J Biomed Mater Res A 78:515–522PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Division for Nanotechnology and Functional Materials, Department of Engineering Sciences, The Ångström LaboratoryUppsala UniversityUppsalaSweden
  2. 2.Division of Applied Materials Science, Department of Engineering Sciences, The Ångström LaboratoryUppsala UniversityUppsalaSweden
  3. 3.Sandvik Tooling Sverige ABStockholmSweden

Personalised recommendations