Advertisement

Biotechnology Letters

, Volume 34, Issue 12, pp 2161–2173 | Cite as

The yeast hypoxic responses, resources for new biotechnological opportunities

  • M. Isabel González Siso
  • Manuel Becerra
  • Mónica Lamas Maceiras
  • Ángel Vizoso Vázquez
  • M. Esperanza Cerdán
Review

Abstract

Recent advances in the knowledge of molecular mechanisms that control the adaptation to low oxygen levels in yeast and their biotechnological applications, including bioproduct synthesis, such as ethanol, glutathione or recombinant proteins, as well as pathogenic virulence, are reviewed. Possible pathways and target genes, which might be of particular interest for the improvement of biotechnological applications, are evaluated.

Keywords

Heme-sensing Hypoxia Sterol-sensing molecular Yeast bio-productions Yeast pathogen virulence 

Notes

Acknowledgments

This research was supported by Grant BFU2009-08854 from Ministerio de Ciencia e Innovación (Spain), co-financed by Fondo Europeo de Desarrollo Regional (FEDER). General support to the laboratory during 2008–11 was funded by Xunta de Galicia (Consolidación Grupos Referencia Competitiva 2008/008), co-financed by FEDER. A.V’s salary was funded by the “María Barbeito pre-doctoral program” from Xunta de Galicia.

References

  1. Abramova NE, Cohen BD, Sertil O, Kapoor R, Davies KJ, Lowry CV (2001) Regulatory mechanisms controlling expression of the DAN/TIR mannoprotein genes during anaerobic remodeling of the cell wall in Saccharomyces cerevisiae. Genetics 157:1169–1177PubMedGoogle Scholar
  2. Askew C, Sellam A, Epp E, Hogues H, Mullick A, Nantel A, Whiteway M (2009) Transcriptional regulation of carbohydrate metabolism in the human pathogen Candida albicans. PLoS Pathog 5:e1000612PubMedCrossRefGoogle Scholar
  3. Aslett M, Wood V (2006) Gene Ontology annotation status of the fission yeast genome: preliminary coverage approaches 100%. Yeast 23:913–919PubMedCrossRefGoogle Scholar
  4. Bao WG, Guiard B, Fang ZA, Donnini C, Gervais M, Passos FM, Ferrero I, Fukuhara H, Bolotin-Fukuhara M (2008) Oxygen-dependent transcriptional regulator Hap1p limits glucose uptake by repressing the expression of the major glucose transporter gene RAG1 in Kluyveromyces lactis. Eukaryot Cell 11:1895–1905CrossRefGoogle Scholar
  5. Barker BM, Kroll K, Vödisch M, Mazurie A, Kniemeyer O, Cramer RA (2012) Transcriptomic and proteomic analyses of the Aspergillus fumigatus hypoxia response using an oxygen-controlled fermenter. BMC Genomics 13:e62CrossRefGoogle Scholar
  6. Baumann K, Maurer M, Dragosits M, Cos O, Ferrer P, Mattanovich D (2008) Hypoxic fed-batch cultivation of Pichia pastoris increases specific and volumetric productivity of recombinant proteins. Biotechnol Bioeng 100:177–183PubMedCrossRefGoogle Scholar
  7. Baumann K, Carnicer M, Dragosits M, Graf AB, Stadlmann J, Jouhten P, Maaheimo H, Gasser B, Albiol J, Mattanovich D, Ferrer P (2010) A multi-level study of recombinant Pichia pastoris in different oxygen conditions. BMC Syst Biol 4:e141CrossRefGoogle Scholar
  8. Baumann K, Dato L, Graf AB, Frascotti G, Dragosits M, Porro D, Mattanovich D, Ferrer P, Branduardi P (2011) The impact of oxygen on the transcriptome of recombinant S. cerevisiae and P. pastoris, a comparative analysis. BMC Genomics 12:e218CrossRefGoogle Scholar
  9. Becerra M, Lombardía-Ferreira LJ, Hauser NC, Hoheisel JD, Tizon B, Cerdán ME (2002) The yeast transcriptome in aerobic and hypoxic conditions: effects of hap1, rox1, rox3 and srb10 deletions. Mol Microbiol 43:545–555PubMedCrossRefGoogle Scholar
  10. Bien CM, Espenshade PJ (2010) Sterol regulatory element binding proteins in fungi: hypoxic transcription factors linked to pathogenesis. Eukaryot Cell 9:352–359PubMedCrossRefGoogle Scholar
  11. Castro Prego R, Lamas Maceiras M, Soengas P, Carneiro I, González Siso MI, Cerdán ME (2010a) Regulatory factors controlling transcription of Saccharomyces cerevisiae IXR1 (ORD1) by oxygen levels. A model of transcriptional adaptation from aerobiosis to hypoxia implicating ROX1 and IXR1 cross-regulation. Biochem J 425:235–243CrossRefGoogle Scholar
  12. Castro Prego R, Lamas Maceiras M, Soengas P, Fernández Leiro R, Carneiro I, Becerra M, González-Siso MI, Cerdán ME (2010b) Ixr1p regulates oxygen-dependent HEM13 transcription. FEMS Yeast Res 10:309–321PubMedCrossRefGoogle Scholar
  13. Chantrel Y, Gaisne M, Lions C, Verdière J (1998) The transcriptional regulator Hap1p (Cyp1p) is essential for anaerobic or heme-deficient growth of Saccharomyces cerevisiae: genetic and molecular characterization of an extragenic suppressor that encodes a WD repeat protein. Genetics 148:559–569PubMedGoogle Scholar
  14. Chen Y, Yang X, Zhang S, Wang X, Guo C, Guo X, Xiao D (2012) Development of Saccharomyces cerevisiae producing higher levels of sulfur dioxide and glutathione to improve beer flavor stability. Appl Biochem Biotechnol 166:402–413PubMedCrossRefGoogle Scholar
  15. Chun CD, Liu OW, Madhani HD (2007) A link between virulence and homeostatic responses to hypoxia during infection by the human fungal pathogen Cryptococcus neoformans. PLoS Pathog 3:e22PubMedCrossRefGoogle Scholar
  16. Clifton IJ, McDonough MA, Ehrismann D, Kershaw NJ, Granatino N, Schofield CJ (2006) Structural studies on 2-oxoglutarate oxygenases and related double-stranded beta-helix fold proteins. J Inorg Biochem 100:644–669PubMedCrossRefGoogle Scholar
  17. Cordente AG, Heinrich A, Pretorius IS, Swiegers JH (2009) Isolation of sulfite reductase variants of a commercial wine yeast with significantly reduced hydrogen sulfide production. FEMS Yeast Res 9:446–459PubMedCrossRefGoogle Scholar
  18. Davies BS, Rine J (2006) A role for sterol levels in oxygen sensing in Saccharomyces cerevisiae. Genetics 174:91–201CrossRefGoogle Scholar
  19. de Groot M, Daran-Lapujade P, van Breukelen B, Knijnenburg T, de Hulster E, Reinders M, Pronk J, Heck A, Slijper M (2007) Quantitative proteomics and transcriptomics of anaerobic and aerobic yeast cultures reveals post-transcriptional regulation of key cellular processes. Microbiology 153:3864–3878PubMedCrossRefGoogle Scholar
  20. Dueñas-Sánchez R, Gutiérrez G, Rincón AM, Codón AC, Benítez T (2012) Transcriptional regulation of fermentative and respiratory metabolism in Saccharomyces cerevisiae industrial bakers’ strains. FEMS Yeast Res. doi: 10.1111/j.1567-1364.2012.00813.x PubMedGoogle Scholar
  21. Ernst JF, Tielker D (2009) Responses to hypoxia in fungal pathogens. Cell Microbiol 11:183–190PubMedCrossRefGoogle Scholar
  22. Farhana A, Guidry L, Srivastava A, Singh A, Hondalus MK, Steyn AJC (2010) Reductive stress in microbes: implications for understanding mycobacterium tuberculosis disease and persistence. Adv Microb Physiol 57:43–117PubMedCrossRefGoogle Scholar
  23. Frand A, Kaiser C (1998) The ERO1 gene of yeast is required for oxidation of protein dithiols in the endoplasmic reticulum. Mol Cell 1:161–170PubMedCrossRefGoogle Scholar
  24. Gasser B, Sauer M, Maurer M, Stadlmayr G, Mattanovich D (2007) Transcriptomics-based identification of novel factors enhancing heterologous protein secretion in yeasts. Appl Environ Microbiol 73:6499–6507PubMedCrossRefGoogle Scholar
  25. Gómez-Pastor R, Pérez-Torrado R, Matallana E (2012) Modification of the TRX2 gene dose in Saccharomyces cerevisiae affects hexokinase 2 gene regulation during wine yeast biomass production. Appl Microbiol Biotechnol 94:773–787PubMedCrossRefGoogle Scholar
  26. González Siso MI, Freire Picos MA, Cerdán ME (1996) Reoxidation of the NADP produced by the pentose phosphate pathway is necessary for the utilization of glucose by Kluyveromyces lactis rag2 mutants. FEBS Lett 387:7–10PubMedCrossRefGoogle Scholar
  27. Guida A, Lindstädt C, Maguire SL, Ding C, Higgins DG, Corton NJ, Berriman M, Butler G (2011) Using RNA-seq to determine the transcriptional landscape and the hypoxic response of the pathogenic yeast Candida parapsilosis. BMC Genomics 12:e628CrossRefGoogle Scholar
  28. Hara KY, Kiriyama K, Inagaki A, Nakayama H, Kondo A (2012) Improvement of glutathione production by metabolic engineering the sulfate assimilation pathway of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 94:1313–1319PubMedCrossRefGoogle Scholar
  29. Henri J, Rispal D, Bayart E, van Tilbeurgh H, Séraphin B, Graille M (2010) Structural and functional insights into Saccharomyces cerevisiae Tpa1, a putative prolylhydroxylase influencing translation termination and transcription. J Biol Chem 285:30767–30778PubMedCrossRefGoogle Scholar
  30. Hickman MJ, Spatt D, Winston F (2011) The Hog1 mitogen-activated protein kinase mediates a hypoxic response in Saccharomyces cerevisiae. Genetics 188:325–338PubMedCrossRefGoogle Scholar
  31. Hon T, Lee HC, Hach A, Johnson JL, Craig EA, Erdjument-Bromage H, Tempst P, Zhang L (2001) The Hsp70-Ydj1 molecular chaperone represses the activity of the heme activator protein Hap1 in the absence of heme. Moll Cell Biol 21:7923–7932CrossRefGoogle Scholar
  32. Hughes BT, Espenshade PJ (2008) Oxygen-regulated degradation of fission yeast SREBP by Ofd1, a prolyl-hydroxylase family member. EMBO J 27:1491–1501PubMedGoogle Scholar
  33. Hughes AL, Todd BL, Espenshade PJ (2005) SREBP pathway responds to sterols and functions as an oxygen sensor in fission yeast. Cell 120:831–842PubMedCrossRefGoogle Scholar
  34. Jiang Y, Vasconcelles MJ, Wretzel S, Light A, Martin CE, Goldberg MA (2001) MGA2 is involved in the low-oxygen response element-dependent hypoxic induction of genes in Saccharomyces cerevisiae. Mol Cell Biol 21:6161–6169PubMedCrossRefGoogle Scholar
  35. Kandasamy P, Vemula M, Oh CS, Chellappa R, Martin CE (2004) Regulation of unsaturated fatty acid biosynthesis in Saccharomyces: the endoplasmic reticulum membrane protein, Mga2p, a transcription activator of the OLE1 gene, regulates the stability of the OLE1 mRNA through exosome-mediated mechanisms. J Biol Chem 279:36586–36592PubMedCrossRefGoogle Scholar
  36. Keng T (1992) HAP1 and ROX1 form a regulatory pathway in the repression of HEM13 transcription in Saccharomyces cerevisiae. Mol Cell Biol 12:2616–2623PubMedGoogle Scholar
  37. Klinkenberg LG, Mennella TA, Luetkenhaus K, Zitomer RS (2005) Combinatorial repression of the hypoxic genes of Saccharomyces cerevisiae by DNA binding proteins Rox1 and Mot3. Eukaryot Cell 4:649–660PubMedCrossRefGoogle Scholar
  38. Lamas Maceiras M, Núñez L, Rodríguez Belmonte E, González Siso MI, Cerdán ME (2007) Functional characterization of KlHAP1: a model to foresee different mechanisms of transcriptional regulation by Hap1p in yeasts. Gene 405:96–107PubMedCrossRefGoogle Scholar
  39. Lamas Maceiras M, Freire-Picos MA, Rodríguez Torres AM (2010) Transcriptional repression by Kluyveromyces lactis Tup1 in Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 38:79–84PubMedCrossRefGoogle Scholar
  40. Lamas Maceiras M, Rodríguez Torres MA, Freire Picos MA (2011) A stress response related to the carbon source and the absence of KlHAP2 in Kluyveromyces lactis. J Ind Microbiol Biotechnol 38:43–49PubMedCrossRefGoogle Scholar
  41. Lando D, Balmer J, Laue ED, Kouzarides T (2012) The S. pombe histone H2A dioxygenase Ofd2 regulates gene expression during hypoxia. PLoS ONE 7:e29765PubMedCrossRefGoogle Scholar
  42. Lee H, Bien CM, Hughes AL, Espenshade PJ, Kwon-Chung KJ, Chang YC (2007) Cobalt chloride, a hypoxia-mimicking agent, targets sterol synthesis in the pathogenic fungus Cryptococcus neoformans. Mol Microbiol 65:1018–1033PubMedCrossRefGoogle Scholar
  43. Lilly M, Bauer FF, Styger G, Lambrechts MG, Pretorius IS (2006) The effect of increased branched-chain amino acid transaminase activity in yeast on the production of higher alcohols and on the flavour profiles of wine and distillates. FEMS Yeast Res 6:726–743PubMedCrossRefGoogle Scholar
  44. Malavé TM, Dent SY (2006) Transcriptional repression by Tup1–Ssn6. Biochem Cell Biol 84:437–443PubMedCrossRefGoogle Scholar
  45. Martin T, Sherman DJ, Durrens P (2011) The Génolevures database. C R Biol 334:585–589PubMedCrossRefGoogle Scholar
  46. Masuo S, Terabayashi Y, Shimizu M, Fujii T, Kitazume T, Takaya N (2010) Global gene expression analysis of Aspergillus nidulans reveals metabolic shift and transcription suppression under hypoxia. Mol Genet Genomics 284:415–424PubMedCrossRefGoogle Scholar
  47. McA’Nulty MM, Whitehead JP, Lippard SJ (1996) Binding of Ixr1, a yeast HMG- domain protein, to cisplatin-DNA adducts in vitro and in vivo. Biochemistry 35:6089–6099PubMedCrossRefGoogle Scholar
  48. Melvin A, Rocha S (2012) Chromatin as an oxygen sensor and active player in the hypoxia response. Cell Signal 24:35–43PubMedCrossRefGoogle Scholar
  49. Mendes-Ferreira A, Barbosa C, Jiménez-Martí E, Del Olmo ML, Mendes-Faia A (2010) The wine yeast strain-dependent expression of genes implicated in sulfide production in response to nitrogen availability. J Microbiol Biotechnol 20:1314–1321PubMedCrossRefGoogle Scholar
  50. Merico A, Sulo P, Piškur J, Compagno C (2007) Fermentative lifestyle in yeasts belonging to the Saccharomyces complex. FEBS J 274(4):976–989PubMedCrossRefGoogle Scholar
  51. Merico A, Galafassi S, Piškur J, Compagno C (2009) The oxygen level determines the fermentation pattern in Kluyveromyces lactis. FEMS Yeast Res 9(5):749–756PubMedCrossRefGoogle Scholar
  52. Micolonghi C, Ottaviano D, Di Silvio E, Damato G, Heipieper H, Bianchi MM (2012) A dual signaling pathway for the hypoxic expression of lipid genes, dependent on the glucose sensor Rag4, is revealed by the analysis of KlMGA2 gene in Kluyveromyces lactis. Microbiology 158:1734–1744PubMedCrossRefGoogle Scholar
  53. Nakayama K (2009) Cellular signal transduction of the hypoxia response. J Biochem 146:757–765PubMedCrossRefGoogle Scholar
  54. Núñez L, Rodríguez-Torres A, Cerdán ME (2008) Regulatory elements in the KlHEM1 promoter. Biochim Biophys Acta 1779:128–133PubMedCrossRefGoogle Scholar
  55. Penacho V, Blondin B, Valero E, Gonzalez R (2012) Flocculation and transcriptional adaptation to fermentation conditions in a recombinant wine yeast strain defective for KNR4/SMI1. Biotechnol Prog 28:327–336PubMedCrossRefGoogle Scholar
  56. Poyton RO, Castello PR, Ball KA, Woo DK, Pan N (2009) Mitochondria and hypoxic signaling: a new view. Ann N Y Acad Sci 1177:48–56PubMedCrossRefGoogle Scholar
  57. Rodríguez Torres AM, Lamas Maceiras M, Rodríguez Belmonte E, Núñez Naveira L, Blanco Calvo M, Cerdán ME (2012) KlRox1p contributes to yeast resistance to metals and is necessary for KlYCF1 expression in the presence of cadmium. Gene 497:27–37CrossRefGoogle Scholar
  58. Setiadi ER, Doedt T, Cottier F, Noffz C, Ernst JF (2006) Transcriptional response of Candida albicans to hypoxia: linkage of oxygen sensing and Efg1p regulatory networks. J Mol Biol 361:399–411PubMedCrossRefGoogle Scholar
  59. Shimizu M, Fujii T, Masuo S, Fujita K, Takaya N (2009) Proteomic analysis of Aspergillus nidulans cultured under hypoxic conditions. Proteomics 9:7–19PubMedCrossRefGoogle Scholar
  60. Silva PA, Mussatto SI, Roberto IC, Teixeira JA (2010) Ethanol production from xylose by Pichia stipitis NRRLY-7124 in a stirred tank bioreactor. Brazilian J Chem Eng 28:151–156CrossRefGoogle Scholar
  61. Simeonidis E, Murabito E, Smallbone K, Westerhoff HV (2010) Why does yeast ferment? A flux balance analysis study. Biochem Soc Trans 38:1225–1229PubMedCrossRefGoogle Scholar
  62. Strogolova V, Furness A, Robb-McGrath M, Garlich J, Stuart RA (2012) Rcf1 and Rcf2, members of the hypoxia-induced gene 1 protein family, are critical components of the mitochondrial cytochrome bc1-cytochrome c oxidase supercomplex. Mol Cell Biol 32:1363–1373PubMedCrossRefGoogle Scholar
  63. Suzuki T, Yokoyama A, Tsuji T, Ikeshima E, Nakashima K, Ikushima S, Kobayashi C, Yoshida S (2011) Identification and characterization of genes involved in glutathione production in yeast. J Biosci Bioeng 112:107–113PubMedCrossRefGoogle Scholar
  64. Swiegers JH, Pretorius IS (2007) Modulation of volatile sulfur compounds by wine yeast. Appl Microbiol Biotechnol 74:954–960PubMedCrossRefGoogle Scholar
  65. Synnott JM, Guida A, Mulhern-Haughey S, Higgins DG, Butler G (2010) Regulation of the hypoxic response in Candida albicans. Eukaryot Cell 9:1734–1746PubMedCrossRefGoogle Scholar
  66. Tsaponina O, Barsoum E, Aström SU, Chabes A (2011) Ixr1 is required for the expression of the ribonucleotide reductase Rnr1 and maintenance of dNTP pools. PLoS Genet 7:e1002061PubMedCrossRefGoogle Scholar
  67. Unrean P, Nguyen NA (2012) Metabolic pathway analysis of Scheffersomyces (Pichia) stipitis: effect of oxygen availability on ethanol synthesis and flux distributions. Appl Microbiol Biotechnol 94:1387–1398PubMedCrossRefGoogle Scholar
  68. Vizoso Vázquez A, Lamas Maceiras M, Becerra M, González Siso MI, Rodríguez Belmonte E, Cerdán ME (2012) Ixr1p and the control of the Saccharomyces cerevisiae hypoxic response. Appl Microbiol Biotechnol 94:173–184PubMedCrossRefGoogle Scholar
  69. Vukotic M, Oeljeklaus S, Wiese S, Vögtle FN, Meisinger C, Meyer HE, Zieseniss A, Katschinski DM, Jans DC, Jakobs S, Warscheid B, Rehling P, Deckers M (2012) Rcf1 mediates cytochrome oxidase assembly and respirasome formation, revealing heterogeneity of the enzyme complex. Cell Metab 15:336–347PubMedCrossRefGoogle Scholar
  70. Walker GM (1998) Yeast metabolism in “Yeast Physiology and Biotechnology”. Wiley, ChichesterGoogle Scholar
  71. Zara G, Angelozzi D, Belviso S, Bardi L, Goffrini P, Lodi T, Budroni M, Mannazzu I (2009) Oxygen is required to restore flor strain viability and lipid biosynthesis under fermentative conditions. FEMS Yeast Res 9:217–225PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • M. Isabel González Siso
    • 1
  • Manuel Becerra
    • 1
  • Mónica Lamas Maceiras
    • 1
  • Ángel Vizoso Vázquez
    • 1
  • M. Esperanza Cerdán
    • 1
  1. 1.Departamento de Biología Celular y Molecular, F. CienciasUniversidad de A CoruñaCoruñaSpain

Personalised recommendations