Advertisement

Biotechnology Letters

, Volume 34, Issue 12, pp 2307–2315 | Cite as

Scale-up of human embryonic stem cell culture using a hollow fibre bioreactor

  • Iwan Roberts
  • Stefano Baila
  • R. Brent Rice
  • Michiel Etienne Janssens
  • Kim Nguyen
  • Nathalie Moens
  • Ludmila Ruban
  • Diana Hernandez
  • Pete Coffey
  • Chris MasonEmail author
Original Research Paper

Abstract

The commercialisation of human embryonic stem cell derived cell therapies for large patient populations is reliant on both minimising expensive and variable manual-handling methods whilst realising economies of scale. The Quantum Cell Expansion System, a hollow fibre bioreactor (Terumo BCT), was used in a pilot study to expand 60 million human embryonic stem cells to 708 million cells. Further improvements can be expected with optimisation of media flow rates throughout the run to better control the cellular microenvironment. High levels of pluripotency marker expression were maintained on the bioreactor, with 97.7 % of cells expressing SSEA-4 when harvested.

Keywords

Bioprocessing Bioreactor Cell therapy Human embryonic stem cells Perfusion, scale-up 

Notes

Acknowledgments

ITR acknowledges support from the Engineering and Physical Science Research Council (EPSRC) Industrial Doctoral Training Centre in Bioprocess Engineering Leadership (EP/G034656/1) and the UK Stem Cell Foundation.

Supplementary material

10529_2012_1033_MOESM1_ESM.docx (11 kb)
Supplementary material 1 (DOCX 11 kb)

References

  1. Amps K, Andrews PW, Anyfantis G, Armstrong L, Avery S, Baharvand et al (2011) Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nat Biotechnol 29(12):1132–1144Google Scholar
  2. Carpenter MK, Frey-Vasconcells J, Rao MS (2009) Developing safe therapies from human pluripotent stem cells. Nat Biotechnol 27(7):606–613PubMedCrossRefGoogle Scholar
  3. Chen X, Chen A, Woo TL, Choo AB, Reuveny S, Oh SK (2010) Investigations into the metabolism of two-dimensional colony and suspended microcarrier cultures of human embryonic stem cells in serum-free media. Stem Cells Dev 19(11):1781–1792PubMedCrossRefGoogle Scholar
  4. Fernandes AM, Marinho PA, Sartore RC, Paulsen BS, Mariante RM, Castilho LR, Rehen SK (2009) Successful scale-up of human embryonic stem cell production in a stirred microcarrier culture system. Braz J Med Biol Res 42(6):515–522PubMedCrossRefGoogle Scholar
  5. Hernandez D, Ruban L, Mason C (2011) Feeder-free culture of human embryonic stem cells for scalable expansion in a reproducible manner. Stem Cells Dev 20(6):1089–1098PubMedCrossRefGoogle Scholar
  6. Hewitt CJ, Lee K, Nienow AW, Thomas RJ, Smith M, Thomas CR (2011) Expansion of human mesenchymal stem cells on microcarriers. Biotechnol Lett 33(11):2325–2335PubMedCrossRefGoogle Scholar
  7. Mason C, Dunnill P (2009) Quantities of cells used for regenerative medicine and some implications for clinicians and bioprocessors. Regen Med 4(2):153–157PubMedCrossRefGoogle Scholar
  8. Nie Y, Bergendahl V, Hei DJ, Jones JM, Palecek SP (2009) Scalable culture and cryopreservation of human embryonic stem cells on microcarriers. Biotechnol Prog 25(1):20–31PubMedCrossRefGoogle Scholar
  9. Phillips BW, Horne R, Lay TS, Rust WL, Teck TT, Crook JM (2008) Attachment and growth of human embryonic stem cells on microcarriers. J Biotechnol 138(1–2):24–32PubMedCrossRefGoogle Scholar
  10. Serra M, Brito C, Sousa MF, Jensen J, Tostoes R, Clemente J, Strehl R, Hyllner J, Carrondo MJ, Alves PM (2010) Improving expansion of pluripotent human embryonic stem cells in perfused bioreactors through oxygen control. J Biotechnol 148(4):208–215PubMedCrossRefGoogle Scholar
  11. Stachelscheid H, Wulf-Goldenberg A, Eckert K, Jensen J, Edsbagge J, Björquist P, Rivero M, Strehl R, Jozefczuk J, Prigione A, Adjaye J, Urbaniak T, Bussmann P, Zeilinger K, Gerlach JC (2012) Teratoma formation of human embryonic stem cells in three-dimensional perfusion culture bioreactors. J Tissue Eng Reg Med. doi:10.1002/term.1467
  12. Steiner D, Khaner H, Cohen M, Even-Ram S, Gil Y, Itsykson P, Turetsky T, Idelson M, Aizenman E, Ram R, Berman-Zaken Y, Reubinoff B (2010) Derivation, propagation and controlled differentiation of human embryonic stem cells in suspension. Nat Biotech 28(4):361–364CrossRefGoogle Scholar
  13. Sun X, Long X, Yin Y, Jiang Y, Chen X, Liu W, Zhang W, Du H, Li S, Zheng Y, Kong S, Pang Q, Shi Y, Huang Y, Huang S, Liao B, Xiao G, Wang W (2008) Similar biological characteristics of human embryonic stem cell lines with normal and abnormal karyotypes. Hum Reprod 23(10):2185–2193PubMedCrossRefGoogle Scholar
  14. Titmarsh D, Hidalgo A, Turner J, Wolvetang E, Cooper-White J (2011) Optimization of flowrate for expansion of human embryonic stem cells in perfusion microbioreactors. Biotechnol Bioeng 108(12):2894–2904PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Iwan Roberts
    • 1
  • Stefano Baila
    • 2
  • R. Brent Rice
    • 3
  • Michiel Etienne Janssens
    • 2
  • Kim Nguyen
    • 3
  • Nathalie Moens
    • 1
  • Ludmila Ruban
    • 1
  • Diana Hernandez
    • 1
    • 4
  • Pete Coffey
    • 5
  • Chris Mason
    • 1
    Email author
  1. 1.The Advanced Centre for Biochemical EngineeringUniversity College LondonLondonUK
  2. 2.Terumo BCT Europe N.VIkaroslaan 41Belgium
  3. 3.Terumo BCTLakewoodUSA
  4. 4.London BioScience Innovation CentreLondonUK
  5. 5.Ocular Biology and TherapeuticsUniversity College London-Institute of OphthalmologyLondonUK

Personalised recommendations