Advertisement

Biotechnology Letters

, Volume 34, Issue 9, pp 1597–1605 | Cite as

Biosurfactants: a sustainable replacement for chemical surfactants?

  • Roger Marchant
  • Ibrahim M. Banat
Review

Abstract

Glycolipid biosurfactants produced by bacteria and yeasts provide significant opportunities to replace chemical surfactants with sustainable biologically produced alternatives in bulk commercial products such as laundry detergents and surface cleaners. Sophorolipids are already available in sufficient yield to make their use feasible while rhamnolipids and mannosylerythritol lipids require further development. The ability to tailor the biosurfactant produced to the specific needs of the product formulation will be an important future step.

Keywords

Biofilm Cleaning products Glycolipid biosurfactants Mannosylerythritol lipids Oil spills Rhamnolipids Sophorolipids Wound healing 

References

  1. Arutchelvi JI, Bhaduri S, Uppara PV, Doble M (2008) Mannosylerythritol lipids: a review. J Ind Microbiol Biotechnol 35:1559–1570PubMedCrossRefGoogle Scholar
  2. Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444PubMedCrossRefGoogle Scholar
  3. Caiazza NC, Shanks RMQ, O’Toole GA (2005) Rhamnolipids modulate swarming motility patterns of Pseudomonas aeruginosa. J Bacteriol 187:7351–7361PubMedCrossRefGoogle Scholar
  4. Casas JA, Garcia-Ochoa F (1999) Sophorolipid production by Candida bombicola: medium composition and culture methods. J Biosci Bioeng 88:488–494PubMedCrossRefGoogle Scholar
  5. Chen ML, Penfold J, Thomas RK, Smyth TJP, Perfumo A, Marchant R, Banat IM, Stevenson P, Parry A, Tucker I, Grillo I (2010a) Mixing behavior of the biosurfactant, rhamnolipid, with a conventional anionic surfactant, sodium dodecyl benzene sulfonate. Langmuir 26:17958–17968PubMedCrossRefGoogle Scholar
  6. Chen ML, Penfold J, Thomas RK, Smyth TJP, Perfumo A, Marchant R, Banat IM, Stevenson P, Parry A, Tucker I, Grillo I (2010b) Solution self-assembly and adsorption at the air-water interface of the monorhamnose and dirhamnose rhamnolipids and their mixtures. Langmuir 26:18281–18292PubMedCrossRefGoogle Scholar
  7. Chen ML, Dong CC, Penfold J, Thomas RK, Smyth TJP, Perfumo A, Marchant R, Banat IM, Stevenson P, Parry A, Tucker I, Campbell RA (2011) Adsorption of sophorolipid biosurfactants on their own and mixed with sodium dodecyl benzene sulfonate at the air/water interface. Langmuir 27:854–8866Google Scholar
  8. Davila AM, Marchal R, Vandecasteele JP (1997) Sophorose lipid fermentation with differentiated substrate supply for growth and production phases. Appl Microbiol Biotechnol 47:496–501CrossRefGoogle Scholar
  9. Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64PubMedGoogle Scholar
  10. Dubeau D, Déziel E, Woods DE, Lépine F (2009) Burkholderia thailandensis harbors two identical rhl gene clusters responsible for the biosynthesis of rhamnolipids. BMC Microbiol 9:263–274PubMedCrossRefGoogle Scholar
  11. Dusane DH, Nancharaiah YV, Zinjarde SS, Venugopalan VP (2010) Rhamnolipid mediated disruption of marine Bacillus pumilus biofilms. Colloids Surf Biointerfaces 81:242–248CrossRefGoogle Scholar
  12. Fracchia L, Cavallo M, Martinotti MG, Banat IM (2012) Biosurfactants and bioemulsifiers biomedical and related applications—present status and future potentials, biomedical science, engineering and technology, Chap. 14, pp 325–370; Dhanjoo N. Ghista (Eds), ISBN: 978-953-307-471-9, InTechGoogle Scholar
  13. Franzetti A, Gandolfi I, Bestetti G, Banat IM (2011) Biosurfactant and bioremediation, successes and failures. In: Plaza G (ed) Trends in bioremediation and phytoremediation. Research Signpost, Kerala, pp 145–156Google Scholar
  14. Fukuoka T, Morita T, Konishi M, Imura T, Sakai H, Kitamoto D (2007) Structural characterisation and surface-active properties of a new glycolipid biosurfactant, mono-acylated mannosylerythritol lipid, produced from glucose by Pseudozyma antarctica. Appl Microbiol Biotechnol 76:801–810PubMedCrossRefGoogle Scholar
  15. Fukuoka T, Yanagihara T, Imura T, Morita T, Sakai H, Abe M, Kitamoto D (2011) Enzymatic synthesis of a novel glycolipid biosurfactant, mannosylerythritol lipid-D and its aqueous phase behavior. Carbohydr Res 346:266–271PubMedCrossRefGoogle Scholar
  16. Guilmanov V, Ballistreri A, Impallomeni G, Gross RA (2002) Oxygen transfer rate and sophorose lipid production by Candida bombicola. Biotechnol Bioeng 77:489–494PubMedCrossRefGoogle Scholar
  17. Gunther IVNW, Nunez A, Fett W, Solaiman DK (2005) Production of rhamnolipids by Pseudomonas chlororaphis, a nonpathogenic bacterium. Appl Environ Microbiol 71:2288–2293PubMedCrossRefGoogle Scholar
  18. Haussler S, Nimtz M, Domke T, Wray V, Steinmetz I (1998) Purification and characterisation of a cytotoxic exolipid of Burkholderia pseudomallei. Infect Immun 66:1588–1593PubMedGoogle Scholar
  19. Hewald S, Linne U, Scherer M, Marahiel MA, Kämper J, Bölker M (2006) Identification of a gene cluster for biosynthesis of mannosylerythritol lipids in the basidiomycetous fungus Ustilago maydis. Appl Environ Microbiol 72:5469–5477PubMedCrossRefGoogle Scholar
  20. Kitamoto D, Ikegami T, Suzuki T, Sasaki A, Takeyama Y, Idemoto Y, Koura N, Yanagishita H (2001) Microbial conversion of n-alkanes into glycolipid biosurfactants, mannosylerythritol lipids by Pseudozyma antarctica. Biotechnol Lett 23:1709–1714CrossRefGoogle Scholar
  21. Klekner V, Kosaric N, Zhou QH (1991) Sophorose lipids produced from sucrose. Biotechnol Lett 13:345–348CrossRefGoogle Scholar
  22. Lang S, Wullbrandt D (1999) Rhamnose lipids—biosynthesis, microbial production and application potential. Appl Microbiol Biotechnol 51:22–32PubMedCrossRefGoogle Scholar
  23. Makkar RS, Cameotra SS, Banat IM (2011) Advances in utilization of renewable substrates for biosurfactant production. AMB Express 1:5PubMedCrossRefGoogle Scholar
  24. Mata-Sandoval JC, Karns J, Torrents A (2001) Effect of nutritional and environmental conditions on the production and composition of rhamnolipids by P. aeruginosa UG2. Microbiol Res 155:249–256PubMedCrossRefGoogle Scholar
  25. Myers D (2006) Surfactant science and technology, 3rd edn. Wiley-Interscience, New YorkGoogle Scholar
  26. Ochsner U, Fiechter A, Reiser J (1994) Isolation, characterisation and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis. J Biol Chem 269:19787–19795PubMedGoogle Scholar
  27. Penfold J, Chen ML, Thomas RK, Dong CC, Smyth TJP, Perfumo A, Marchant R, Banat IM, Stevenson P, Parry A, Tucker I, Grillo I (2011) Solution self-assembly of the sophorolipid biosurfactant and its mixture with anionic surfactant sodium dodecyl benzene sulfonate. Langmuir 27:8867–8877PubMedCrossRefGoogle Scholar
  28. Perfumo A, Banat IM, Canganella F, Marchant R (2006) Rhamnolipid production by a novel thermotolerant hydrocarbon-degrading Pseudomonas aeruginosa AP02-1. Appl Microbiol Biotechnol 72:132–138PubMedCrossRefGoogle Scholar
  29. Perfumo A, Smyth T, Marchant R, Banat IM (2010) Production and roles of biosurfactants and bioemulsifiers in accessing hydrophobic substrates. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 1501–1512CrossRefGoogle Scholar
  30. Piljac A, Stipcevic T, Piljac-Zegarac J, Piljac G (2008) Successful treatment of chronic decubitus ulcer with 0.1 % dirhamnolipid ointment. J Cutan Med Surg 12:142–146PubMedGoogle Scholar
  31. Rodrigues L, Banat IM, Teixeira J, Oliveira R (2006) Biosurfactants: potential applications in medicine. J Antimicrob Chemother 57:609–618PubMedCrossRefGoogle Scholar
  32. Rodrigues L, Banat IM, Teixeira J, Oliveira R (2007) Strategies for the prevention of microbial biofilm formation on silicone rubber voice prostheses. J Biomed Mater Res 81B(2):358–370CrossRefGoogle Scholar
  33. Ron EZ, Rosenberg E (2001) Natural roles of biosurfactants. Environ Microbiol 3:229–236PubMedCrossRefGoogle Scholar
  34. Saerens KMJ, Zhang JX, Saey L, Van Bogaert INA, Soetaert W (2011) Cloning and functional characterization of the UDP-glucosyltransferase UgtB1 involved in sophorolipid production by Candida bombicola and creation of a glucolipid-producing yeast strain. Yeast 28:279–292PubMedCrossRefGoogle Scholar
  35. Smyth T, Perfumo A, Marchant R, Banat I (2010a) Directed microbial biosynthesis of deuterated biosurfactants and potential future application to other bioactive molecules. Appl Microbiol Biotechnol 87:1347–1354PubMedCrossRefGoogle Scholar
  36. Smyth T, Perfumo A, Marchant R, Banat I (2010b) Isolation and analysis of low molecular weight microbial glycolipids. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 3705–3723CrossRefGoogle Scholar
  37. Smyth TJP, Perfumo A, McClean S, Marchant R, Banat IM (2010c) Isolation and analysis of lipopeptides and high molecular weight biosurfactants. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 3689–3704Google Scholar
  38. Soberón-Chávez G, Lépine F, Déziel E (2005) Production of rhamnolipids by Pseudomonas aeruginosa. Appl Microbiol Biotechnol 68:718–725PubMedCrossRefGoogle Scholar
  39. Stoimenova E, Vasileva-Tonkova E, Sotirova A, Galabova D, Lalchev Z (2009) Evaluation of different carbon sources for growth and biosurfactant production by Pseudomonas fluorescens isolated from wastewaters. Z Naturforsch 64:96–102Google Scholar
  40. Van Bogaert INA, Saerens K, De Muynck C, Develter D, Soetaert W, Vandamme EJ (2007) Microbial production and application of sophorolipids. Appl Microbiol Biotechnol 76:23–34PubMedCrossRefGoogle Scholar
  41. Van Bogaert INA, Sabirova J, Develter D, Soetaert W, Vandamme EJ (2009) Knocking out the MFE-2 gene of Candida bombicola leads to improved medium-chain sophorolipid production. FEMS Yeast Res 9:610–617PubMedCrossRefGoogle Scholar
  42. Van Bogaert INA, Fleurackers S, Van Kerrebroeck S, Develter D, Soetaert W (2011) Production of new-to-nature sophorolipids by cultivating the yeast Candida bombicola on unconventional hydrophobic substrates. Biotechnol Bioeng 108:734–741PubMedCrossRefGoogle Scholar
  43. Van Hamme JD, Singh A, Ward OP (2006) Physiological aspects, Part 1 in a series of papers devoted to surfactants in microbiology and biotechnology. Biotechnol Adv 24:604–620PubMedCrossRefGoogle Scholar
  44. Vasileva-Tonkova E, Galabova D, Stoimenova E, Lalchev Z (2006) Production and properties of biosurfactants from a newly isolated Pseudomonas fluorescens HW-6 growing on hexadecane. Z Naturforsch 61:553–559Google Scholar
  45. Zhu K, Rock CO (2008) RhlA converts β-hydroxyacyl-acyl carrier protein intermediates in fatty acid synthesis to the β-hydroxydecanoyl-β-hydroxydecanoate component of rhamnolipids in Pseudomonas aeruginosa. J Bacteriol 190:3147–3154PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.School of Biomedical SciencesUniversity of UlsterNorthern IrelandUK

Personalised recommendations