Advertisement

Biotechnology Letters

, Volume 34, Issue 9, pp 1607–1616 | Cite as

Heat-processed Gynostemma pentaphyllum extract improves obesity in ob/ob mice by activating AMP-activated protein kinase

  • Rehman Gauhar
  • Seung-Lark Hwang
  • Si-Sung Jeong
  • Ji-Eun Kim
  • Hebok Song
  • Dong Chan Park
  • Kyung-Sik Song
  • Tae Young Kim
  • Won Keun Oh
  • Tae-Lin Huh
Original Research Paper

Abstract

Gynostemma pentaphyllum is widely used in Asian countries as a herbal medicine to treat dyslipidemia, type 2 diabetes and inflammation. An ethanol extract of G. pentaphyllum lessened obesity by activating AMP-activated protein kinase (AMPK). The levels of damulins A and B, components responsible for AMPK activation in the extract, were increased by autoclaving in a time-dependent manner. Heat-processed G. pentaphyllum extract, actiponin containing damulins A (0.93 %, w/w) and B (0.68 %, w/w), significantly stimulated fat oxidation and glucose uptake via AMPK activation in L6 myotube cells. Oral administration of actiponin to ob/ob mice for 8 weeks decreased body weight gain, liver weight, and blood cholesterol levels with AMPK activation in the soleus muscle. Our results demonstrate the beneficial effect of G. pentaphyllum on improving obesity and have elucidated the underlying molecular mechanisms.

Keywords

AMP-activated protein kinase Damulins Fat oxidation Gynostemma pentaphyllum Obesity 

Notes

Acknowledgments

This work was supported by a grant (PF06212-00) from the Plant Diversity Research Center of the 21st Century Frontier Research Program funded by the Ministry of Science and Technology, and by a grant (A111345) from the Korean Health Technology R&D Project from the Ministry of Health and Welfare, Republic of Korea.

Supplementary material

10529_2012_944_MOESM1_ESM.docx (26 kb)
Supplementary material 1 (DOCX 25 kb)
10529_2012_944_MOESM2_ESM.pptx (190 kb)
Supplementary material 2 (PPTX 190 kb)

References

  1. Burcelin R, Crivelli V, Perrin C, Da Costa A, Mu J, Kahn BB, Birnbaum MJ, Kahn CR, Vollenweider P, Thorens B (2003) GLUT4, AMP kinase, but not the insulin receptor, are required for hepatoportal glucose sensor-stimulated muscle glucose utilization. J Clin Invest 111:1555–1562PubMedGoogle Scholar
  2. Cabrero A, Alegret M, Sánchez RM, Adzet T, Laguna JC, Vázquez M (2001) Bezafibrate reduces mRNA levels of adipocyte markers and increases fatty acid oxidation in primary culture of adipocytes. Diabetes 50:1883–1890PubMedCrossRefGoogle Scholar
  3. Cool B, Zinker B, Chiou W, Kifle L, Cao N, Perham M, Dickinson R, Adler A, Gagne G, Lyengar R, Zhao G, Marsh K, Kym P, Jung P, Camp HS, Frevert E (2006) Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab 3:403–416PubMedCrossRefGoogle Scholar
  4. Davies SP, Carling D, Munday MR, Hardie DG (1992) Diurnal rhythm of phosphorylation of rat liver acetyl-CoA carboxylase by the AMP-activated protein kinase, demonstrated using freeze-clamping. Effects of high fat diets. Eur J Biochem 203:615–623PubMedCrossRefGoogle Scholar
  5. Fogarty S, Hardie DG (2010) Development of protein kinase activators: AMPK as a target in metabolic disorders and cancer. Biochim Biophys Acta 1804:581–591PubMedCrossRefGoogle Scholar
  6. Guh DP, Zhang W, Bansback N, Amarsi Z, Birmingham CL, Anis AH (2009) The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Public Health 9:88PubMedCrossRefGoogle Scholar
  7. Hwang SL, Kim HN, Jung HH, Kim JE, Choi DK, Hur JM, Lee JY, Song H, Song KS, Huh TL (2008) Beneficial effects of β-sitosterol on glucose and lipid metabolism in L6 myotube cells are mediated by AMP-activated protein kinase. Biochem Biophys Res Commun 377:1253–1258PubMedCrossRefGoogle Scholar
  8. Kim WY, Kim JM, Han SB, Lee SK, Kim ND, Park MK, Kim CK, Park JH (2000) Steaming of ginseng at high temperature enhances biological activity. J Nat Prod 63:1702–1704PubMedCrossRefGoogle Scholar
  9. Kim MS, Park JY, Namkoong C, Jang PG, Ryu JW, Song HS, Yun JY, Namgoong IS, Ha J, Park IS, Lee IK, Viollet B, Youn JH, Lee HK, Lee KU (2004) Anti-obesity effects of α-lipoic acid mediated by suppression of hypothalamic AMP-activated protein kinase. Nat Med 10:727–733PubMedCrossRefGoogle Scholar
  10. Koh HJ, Lee SM, Son BG, Lee SH, Ryoo ZY, Chang KT, Park JW, Park DC, Song BJ, Veech RL, Song H, Huh TL (2004) Cytosolic NADP+-dependent isocitrate dehydrogenase plays a key role in lipid metabolism. J Biol Chem 9:9968–39974Google Scholar
  11. Kurth-Kraczek EJ, Hirshman MF, Goodyear LJ, Winder WW (1999) 5′ AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle. Diabetes 48:1667–1671PubMedCrossRefGoogle Scholar
  12. Lage R, Diéguez C, Vidal-Puig A, López M (2008) AMPK: a metabolic gauge regulating whole-body energy homeostasis. Trends Mol Med 14:539–549PubMedCrossRefGoogle Scholar
  13. Lee YS, Kim WS, Kim KH, Yoon MJ, Cho HJ, Shen Y, Ye JM, Lee CH, Oh WK, Kim CT, Hohnen-Behrens C, Gosby A, Kraegen EW, James DE, Kim JB (2006) Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes 55:2256–2264PubMedCrossRefGoogle Scholar
  14. Nguyen PH, Gauhar R, Hwang SL, Dao TT, Park DC, Kim JE, Song H, Huh TL, Oh WK (2011) New dammarane-type glucosides as potential activators of AMP-activated protein kinase (AMPK) from Gynostemma pentaphyllum. Bioorg Med Chem 19:6254–6260PubMedCrossRefGoogle Scholar
  15. Nishiumi S, Ashida H (2007) Rapid preparation of a plasma membrane fraction from adipocytes and muscle cells: application to detection of translocated glucose transporter 4 on the plasma membrane. Biosci Biotechnol Biochem 71:2343–2346PubMedCrossRefGoogle Scholar
  16. Okada T, Kawano Y, Sakakibara T, Hazeki O, Ui M (1994) Essential role of phosphatidylinositol 3-kinase in insulin-induced glucose transport and antilipolysis in rat adipocytes. Studies with a selective inhibitor wortmannin. J Biol Chem 269:3568–3573PubMedGoogle Scholar
  17. Razmovski-Naumovski V, Huang TH, Tran VH, Li GQ, Duke CC, Roufogalis BD (2005) Chemistry and pharmacology of Gynostemma pentaphyllum. Phytochem Rev 4:197–219CrossRefGoogle Scholar
  18. Takemoto T, Arihara S, Yoshikawa K, Kawasaki J, Nakajima T, Okuhira M (1984) Studies on the constituents of cucurbitaceae plants. XI. On the saponin constituents of Gynostemma pentaphyllum Makino (7). Yakugaku Zasshi 104:1043–1049Google Scholar
  19. Towler MC, Hardie DG (2007) AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res 100:328–341PubMedCrossRefGoogle Scholar
  20. Xiao B, Sanders MJ, Underwood E, Heath R, Mayer FV, Carmena D, Jing C, Walker PA, Eccleston JF, Haire LF, Saiu P, Howell SA, Aasland R, Martin SR, Carling D, Gamblin SJ (2011) Structure of mammalian AMPK and its regulation by ADP. Nature 472:230–233PubMedCrossRefGoogle Scholar
  21. Yeo J, Kang YJ, Jeon SM, Jung UJ, Lee MK, Song H, Choi MS (2008) Potential hypoglycemic effect of an ethanol extract of Gynostemma pentaphyllum in C57BL/KsJ-db/db mice. J Med Food 11:709–716PubMedCrossRefGoogle Scholar
  22. Yoshikawa K, Arimitsu M, Kishi K, Takemoto T, Arihara S (1987) Studies on the constituents of Cucurbitaceae plants. XVIII. On the saponin constituents of Gynostemma pentaphyllum Makino. (13). Yakugaku Zasshi 107:361–366Google Scholar
  23. Zhang BB, Zhou G, Li C (2009) AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell Metab 9:407–416PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Rehman Gauhar
    • 1
  • Seung-Lark Hwang
    • 2
  • Si-Sung Jeong
    • 1
  • Ji-Eun Kim
    • 2
  • Hebok Song
    • 2
  • Dong Chan Park
    • 2
  • Kyung-Sik Song
    • 3
  • Tae Young Kim
    • 4
  • Won Keun Oh
    • 5
  • Tae-Lin Huh
    • 1
    • 2
    • 6
    • 7
  1. 1.School of Life Science and BiotechnologyKyungpook National UniversityDaeguRepublic of Korea
  2. 2.TG Biotech Research InstituteKyungpook National UniversityDaeguRepublic of Korea
  3. 3.College of PharmacyKyungpook National UniversityDaeguRepublic of Korea
  4. 4.BTC, Technology Development CenterGyeonggi TechnoparkAnsanRepublic of Korea
  5. 5.College of PharmacyChosun UniversityGwangjuRepublic of Korea
  6. 6.Korea Basic Science Institute Daegu CenterKyungpook National UniversityDaeguRepublic of Korea
  7. 7.Kyungpook National University HospitalDaeguRepublic of Korea

Personalised recommendations