Advertisement

Biotechnology Letters

, Volume 34, Issue 8, pp 1415–1434 | Cite as

Butanol production from lignocellulosics

  • German Jurgens
  • Shrikant Survase
  • Oxana Berezina
  • Evangelos Sklavounos
  • Juha Linnekoski
  • Antti Kurkijärvi
  • Minna Väkevä
  • Adriaan van Heiningen
  • Granström Tom Email author
REVIEW

Abstract

Clostridium spp. produce n-butanol in the acetone/butanol/ethanol process. For sustainable industrial scale butanol production, a number of obstacles need to be addressed including choice of feedstock, the low product yield, toxicity to production strain, multiple-end products and downstream processing of alcohol mixtures. This review describes the use of lignocellulosic feedstocks, bioprocess and metabolic engineering, downstream processing and catalytic refining of n-butanol.

Keywords

Acetone/butanol/ethanol fermentation Butanol Chemical catalysis Downstream processing Lignocellulosics 

Notes

Acknowledgments

Authors would like to acknowledge and thank Professor Matti Leisola (Department of Biotechnology and Chemical Technology, Aalto University, Finland) for the valuable comments, suggestions and corrections of the manuscript.

References

  1. Adhami L, Griggs B, Himebrook P, Taconi K (2009) Liquid–liquid extraction of butanol from dilute aqueous solutions using soybean-derived biodiesel. J Am Oil Chem Soc 86:1123–1128CrossRefGoogle Scholar
  2. Alriksson B (2006) Ethanol from lignocellulose. Karlstad University, Karlstad Licentiate ThesisGoogle Scholar
  3. Al-Sahhaf TA, Kapetanovic E (1997) Salt effects of lithium chloride, sodium bromide, or potassium iodide on liquid–liquid equilibrium in the system water + 1-butanol. J Chem Eng Data 42(1):74–77CrossRefGoogle Scholar
  4. Annous BA, Blaschek HP (1991) Isolation and characterization of Clostridium acetobutylicum mutants with enhanced amylolytic activity. Appl Environ Microbiol 57:2544–2548PubMedGoogle Scholar
  5. Aoki Y, Moriyoshi T (1978) Mutual solubility of n-butanol + water under high pressures. J Chem Thermodyn 10:1173–1184CrossRefGoogle Scholar
  6. Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP, Chou KJY, Hanai T, Liao JC (2008a) Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng 10:305–311PubMedCrossRefGoogle Scholar
  7. Atsumi S, Hanai T, Liao JC (2008b) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–90PubMedCrossRefGoogle Scholar
  8. Atsumi S, Wu TY, Eckl EM, Hawkins SD, Buelter T, Liao JC (2010) Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Appl Microbiol Biotechnol 85:651–657PubMedCrossRefGoogle Scholar
  9. Bankar SB, Survase SA, Singhal RS, Granström T (2012) Continuous two stage acetone–butanol–ethanol fermentation with integrated solvent removal using Clostridium acetobutylicum B5313. Bioresour Technol Bioresour Technol 106:110–116CrossRefGoogle Scholar
  10. Berezina OV, Zakharova NV, Brandt A, Yarotsky SV, Schwarz WH, Zverlov VV (2010) Reconstructing the clostridial n-butanol metabolic pathway in Lactobacillus brevis. Appl Microbiol Biotechnol 87:635–646PubMedCrossRefGoogle Scholar
  11. Berteau P, Delmon B (1989) Modified aluminas: relationship between activity in 1-butanol dehydration and acidity measured by NH3 TPD. Catal Today 5:121–137CrossRefGoogle Scholar
  12. Berteau P, Ruwet M, Delmon B (1985) Reaction pathways in 1-butanol dehydration alumina. B Soc Chim Belg 94:859–868CrossRefGoogle Scholar
  13. Bimbela F, Oliva M, Ruiz J, García L, Arauzo J (2009) Catalytic steam reforming of model compounds of biomass pyrolysis liquids. J Anal Appl Pyrolysis 85:204–213CrossRefGoogle Scholar
  14. Black N (1991) ASAM alkaline sulfite pulping process shows potential for large-scale application. Tappi 87–93Google Scholar
  15. Bozell JJ (2010) An evolution from pretreatment to fractionation will enable successful development of the integrated biorefinery. BioResources 5(3):1326–1327Google Scholar
  16. Cann AF, Liao JC (2008) Production of 2-methyl-1-butanol in engineered Escherichia coli. Appl Microbiol Biotechnol 81:89–98Google Scholar
  17. Connor MR, Liao JC (2008) Engineering of an Escherichia coli strain for the production of 3-methyl-1-butanol. Appl Environ Microbiol 74:5769–5775PubMedCrossRefGoogle Scholar
  18. D’Amore MB, Manzer LE, Miller ES, Knapp JP (2006) Process for making isooctenes from aqueous 2-butanol. Patent application USPC Class: 568671, USAGoogle Scholar
  19. Davis IJ, Carter G, Young M, Minton NP (2005) Gene cloning in clostridia. In: Dürre P (ed) Handbook on clostridia. Taylor & Francis-CRC Press, New York, pp 37–52Google Scholar
  20. Dellomonaco C, Clomburg JM, Miller EN, Gonzalez R (2011) Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals. Nature 476(7360):355–359. doi: 10.1038/nature10333 Google Scholar
  21. Domokos L (1973) Skeletal isomerization of n-butene over medium pore zeolites. PhD thesis, University of Twente, EnschedeGoogle Scholar
  22. Dürre P (1998) New insights and novel developments in clostridial acetone/isopropanol fermentation. Appl Microbiol Biotechnol 49:639–648CrossRefGoogle Scholar
  23. Dürre P (2007) Biobutanol: an attractive biofuel. Biotechnol J 2:1525–1534PubMedCrossRefGoogle Scholar
  24. Dürre P (2011) Fermentative production of butanol—the academic perspective. Curr Opin Biotechnol 22(3):331–336PubMedCrossRefGoogle Scholar
  25. Eckert G, Schugerl K (1987) Continuous acetone–butanol production with direct product removal. Appl Microbiol Biotechnol 27:221–228CrossRefGoogle Scholar
  26. Efremenko EN, Stepanov NA, Nikolskaya AB, Senko OV, Spiricheva OV, Varfolomeev SD (2011) Biocatalysts based on immobilized cells of microorganisms in the production of bioethanol and biobutanol. Catal Ind 3(1):41–46CrossRefGoogle Scholar
  27. Elander RT, Dale BE, Holtzapple M, Ladisch MR, Lee YY, Mitchinson C, Saddler JN, Wyman CE (2009) Summary of findings from the biomass refining consortium for applied fundamentals and innovation (CAFI): corn stover pretreatment. Cellulose 16(4):649–659CrossRefGoogle Scholar
  28. Evans PJ, Wang HY (1988) Enhancement of butanol formation by Clostridium acetobutylicum in the presence of decanol–oleyl alcohol mixed extractants. Appl Environ Microbiol 54(7):1662–1667PubMedGoogle Scholar
  29. Ezeji TC, Blaschek HP (2008) Fermentation of dried distillers’ grains and soluble (DDGS) hydrolysates to solvents and value-added products by solventogenic clostridia. Bioresour Technol 99:5232–5242PubMedCrossRefGoogle Scholar
  30. Ezeji TC, Qureshi N, Blaschek HP (2004a) Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping. Appl Microbiol Biotechnol 63:653–658PubMedCrossRefGoogle Scholar
  31. Ezeji TC, Qureshi N, Blaschek HP (2004b) Butanol fermentation research: upstream and downstream manipulations. Chem Rec 4:305–314PubMedCrossRefGoogle Scholar
  32. Ezeji T, Qureshi N, Blaschek HP (2007) Production of acetone–butanol–ethanol (ABE) in a continuous flow bioreactor using degermed corn and Clostridium beijerinckii. Process Biochem 42:34–39CrossRefGoogle Scholar
  33. Fengel D, Wegener G (1989) Wood—chemistry, ultrastructure, reactions. Walter de Gruyter, BerlinGoogle Scholar
  34. Fond O, Engasser JM, Matta-El-Amouri G, Petitdemange H (1986) The acetone butanol fermentation on glucose and xylose. II: regulation and kinetics in batch cultures. Biotechnol Bioeng 28:160–166PubMedCrossRefGoogle Scholar
  35. Formanek J, Mackie R, Blaschek HP (1997) Enhanced butanol production by Clostridium beijerinckii BA101 grown in semidefined P2 medium containing 6 percent maltodextrin or glucose. Appl Environ Microbiol 63:2306–2310PubMedGoogle Scholar
  36. Fortman JL, Chhabra S, Mukhopadhyay A, Chou H, Lee TS, Steen E, Keasling JD (2008) Biofuel alternatives to ethanol: pumping the microbial well. Trends Biotechnol 26(7):375–381PubMedCrossRefGoogle Scholar
  37. Fouad EA, Feng X (2008) Use of pervaporation to separate butanol from dilute aqueous solutions: effects of operating conditions and concentration polarization. J Membrane Sci 323:428–435CrossRefGoogle Scholar
  38. Galbe M, Zacchi G (2002) A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59(6):618–628Google Scholar
  39. Grobben NG, Eggink G, Cuperus FP, Huizing HJ (1993) Production of acetone, butanol and ethanol (ABE) from potato wastes: fermentation with integrated membrane extraction. Appl Microbiol Biotechnol 39:494–498CrossRefGoogle Scholar
  40. Groot WJ, Soedjak HS, Donck PB, Van der Lans RGJM, Luyben KCAM, Timmer JMK (1990) Butanol recovery from fermentations by liquid–liquid-extraction and membrane solvent-extraction. Bioprocess Eng 5(5):203–216CrossRefGoogle Scholar
  41. Gulevich AY, Skorokhodova AY, Sukhozhenko AV, Shakulov RS, Debabov VG (2011) Metabolic engineering of Escherichia coli for 1-butanol biosynthesis through the inverted aerobic fatty acid β-oxidation pathway. Biotechnol Lett. doi: 10.1007/s10529-011-0797-z PubMedGoogle Scholar
  42. Harris LM, Desai RP, Welker NE, Papoutsakis ET (2000) Characterization of recombinant strains of the Clostridium acetobutylicum butyrate kinase inactivation mutant: Need for new phenomenological models for solventogenesis and butanol inhibition? Biotechnol Bioeng 67:1–11PubMedCrossRefGoogle Scholar
  43. Harris LM, Blank L, Desai RP, Welker NE, Papoutsakis ET (2001) Fermentation characterization and flux analysis of recombinant strains of Clostridium acetobutylicum with an inactivated solR gene. J Ind Microbiol Biotechnol 27:322–328PubMedCrossRefGoogle Scholar
  44. Harris LM, Welker NE, Papoutsakis ET (2002) Northern, morphological, and fermentation analysis of spo0A inactivation and overexpression in Clostridium acetobutylicum ATCC 824. J Bacteriol 184:3586–3697PubMedCrossRefGoogle Scholar
  45. Heap JT, Kuehne SA, Ehsaan M, Cartman ST, Cooksley CM, Scott JC, Minton NP (2010) The ClosTron: mutagenesis in clostridium refined and streamlined. J Microbiol Methods 80:49–55PubMedCrossRefGoogle Scholar
  46. Heap JT, Ehsaan M, Cooksley CM, Ng Y-K, Cartman ST, Winzer K, Minton NP (2012) Integration of DNA into bacterial chromosomes from plasmids without a counter-selection marker. Nucleic Acids Res. doi: 10.1093/nar/gkr1321 PubMedGoogle Scholar
  47. Hillmann F, Fischer R-J, Saint-Prix F, Girbal L, Bahl H (2008) PerR acts as a switch for oxygen tolerance in the strict anaerobe Clostridium acetobutylicum. Mol Microbiol 68:848–860PubMedCrossRefGoogle Scholar
  48. Hipolito CN, Crabbe E, Badillo CM, Zarrabal OC, Mora MAM, Flores GP, Cortazar M de AH, Ishizaki A (2008) Bioconversion of industrial wastewater from palm oil processing to butanol by Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564). J Cleaner Prod 16:632–638Google Scholar
  49. Horváth IS, Sjöde A, Alriksson B, Jönsson LJ, Nilvebrant NO (2005) Critical conditions for improved fermentability during overliming of acid hydrolysates from spruce. Appl Biochem Biotechnol 121–124:1031–1044PubMedCrossRefGoogle Scholar
  50. Hu X, Lu G (2009) Investigation of the effects of molecular structure on oxygenated hydrocarbon steam re-forming. Energy Fuel 23:926–933CrossRefGoogle Scholar
  51. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry catalysts and engineering. Chem Rev 106(9):4044–4096PubMedCrossRefGoogle Scholar
  52. Iakovlev M (2011) SO2/ethanol/water fractionation of lignocellulosics. PhD Thesis, Aalto University, EspooGoogle Scholar
  53. Iakovlev M, van Heiningen A (2011) SO2/ethanol/water (SEW) pulping: I. Lignin determination in pulps and liquors. J Wood Chem Technol 31(3):233–249CrossRefGoogle Scholar
  54. Iakovlev M, Pääkkönen T, van Heiningen A (2009) Kinetics of SO2/ethanol/water pulping of spruce. Holzforschung 63(6):779–784CrossRefGoogle Scholar
  55. Inui M, Suda M, Kimura S, Yasuda K, Suzuki H, Toda H, Yamamoto S, Okino S, Suzuki N, Yukawa H (2008) Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Appl Microbiol Biotechnol 77:1305–1316PubMedCrossRefGoogle Scholar
  56. Jin C, Yaoc M, Liuc H, Lee C-F, Ji J (2011) Progress in the production and application of n-butanol as a biofuel. Renew Sustain Energy Rev 15:4080–4106CrossRefGoogle Scholar
  57. Jones DT, Woods DR (1986) Acetone–butanol fermentation revisited. Microbiol Rev 50:484–524PubMedGoogle Scholar
  58. Jones JW, Paredes CJ, Tracy B, Cheng N, Sillers R, Senger RS, Papoutsakis ET (2008) The transcriptional program underlying the physiology of clostridial sporulation. Genome Biol 9:R114. doi: 10.1186/gb-2008-9-7-r114 PubMedCrossRefGoogle Scholar
  59. Jurgens G, Granström TB, van Heiningen A (2010) Cloning and expression of primary-secondary alcohol dehydrogenase gene from Clostridium beijerinckii as a part of the project of producing biofuels from forest biomass. Poster at Clostridium 11 conference, San DiegoGoogle Scholar
  60. Karinen RS, Linnekoski JA, Krause AOI (2001) Etherification of C-5- and C-8-alkenes with C-1- to C-4-alcohols. Catal Lett 76(1–2):81–87CrossRefGoogle Scholar
  61. Knoshaug EP, Zhang M (2009) Butanol tolerance in a selection of microorganisms. Appl Biochem Biotechnol 153:13–20PubMedCrossRefGoogle Scholar
  62. Krause OA, Keskinen KI (2008) Etherification. In: Ertl G, Knötzinger H, Schut F, Weitkamp J (eds) Handbook of heterogenous catalysis, 2nd edn. Wiley, New York, pp 2864–2881Google Scholar
  63. Kuit W, Minton NP, López-Contreras AM, Eggink G (2012) Disruption of the acetate kinase (ack) gene of Clostridium acetobutylicum results in delayed acetate production. Appl Microbiol Biotechnol. doi: 10.1007/s00253-011-3848-4 PubMedGoogle Scholar
  64. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729CrossRefGoogle Scholar
  65. Laitinen A, Kaunisto J (1999) Supercritical fluid extraction of 1-butanol from aqueous solutions. The J Supercrit Fluids 15(3):245–252CrossRefGoogle Scholar
  66. Larsson S, Reimann A, Nilvebrant N-O, Jönsson LJ (1999) Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce. Appl Biochem Biotechnol 77:91–103CrossRefGoogle Scholar
  67. Lee SM, Cho MO, Park CH, Chung YC, Kim JH, Sang BI, Um Y (2008a) Continuous butanol production using suspended and immobilized Clostridium beijerinckii NCIMB 8052 with supplementary butyrate. Energy Fuels 22(5):3459–3464CrossRefGoogle Scholar
  68. Lee SY, Park JH, Jang SH, Nielsen LK, Kim J, Jung KS (2008b) Fermentative butanol production by clostridia. Biotechnol Bioeng 101:209–228PubMedCrossRefGoogle Scholar
  69. Lee J, Seo E, Kweon DH, Park K, Jin YS (2009) Fermentation of rice bran and defatted rice bran for butanol production using Clostridium beijerinckii NCIMB 8052. J Microbiol Biotechnol 19:482–490PubMedCrossRefGoogle Scholar
  70. Lee J, Jang YS, Choi SJ, Im JA, Song H, Cho JH, Seung do Y, Papoutsakis ET, Bennett GN, Lee SY (2012) Metabolic engineering of Clostridium acetobutylicum ATCC 824 for isopropanol–butanol–ethanol fermentation. Appl Environ Microbiol 78(5):1416–1423PubMedCrossRefGoogle Scholar
  71. Leschinsky M (2009) Water prehydrolysis of Eucalyptus globulus: formation of lignin-derived precipitates that impair the extraction of hemicelluloses. PhD thesis, University of Hamburg, HamburgGoogle Scholar
  72. Li SY, Srivastava R, Suib SL, Li Y, Parnas RS (2011) Performance of batch, fed-batch, and continuous A-B-E fermentation with pH-control. Bioresource Technol 102(5):4241–4250CrossRefGoogle Scholar
  73. Lienhardt J, Schripsema J, Qureshi N, Blaschek HP (2002) Butanol production by Clostridium beijerinckii BA101 in an immobilized cell biofilm reactor-Increase in sugar utilization. App Biochem Biotechnol 98–100:591–598CrossRefGoogle Scholar
  74. Linek V, Vacek V (1981) Chemical engineering use of catalyzed sulfite oxidation kinetics for the determination of mass transfer characteristics of gas–liquid contactors. Chem Eng Sci 36:1747–1768CrossRefGoogle Scholar
  75. Liu Z, Ying Y, Li F, Ma C, Xu P (2010) Butanol production by Clostridium beijerinckii ATCC 55025 from wheat bran. J Ind Microbiol Biotechnol 37(5):495–501PubMedCrossRefGoogle Scholar
  76. Lokman BC, van Santen P, Verdoes JC, Kruse J, Leer RJ, Posno MPouwels PH (1991) Organization and characterization of three genes involved in d-xylose catabolism in Lactobacillus pentosus. Mol Gen Genet 230:161–169PubMedCrossRefGoogle Scholar
  77. Lu C, Zhao J, Yang ST, Wei D (2011) Fed-batch fermentation for n-butanol production from cassava bagasse hydrolysate in a fibrous bed bioreactor with continuous gas stripping. Bioresour Technol. doi: 10.1016/j.biortech.2011.10.089 Google Scholar
  78. Lütke-Eversloh T, Bahl H (2011) Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production. Curr Opin Biotechnol 22:1–44CrossRefGoogle Scholar
  79. Mabee WE, Gregg DJ, Arato C, Berlin A, Bura R, Gilkes N, Mirochnik O, Pan X, Pye EK, Saddler JN (2006) Updates on softwood-to-ethanol process development. Appl Biochem Biotechnol 129–132:55–70PubMedCrossRefGoogle Scholar
  80. Macho V, Králik M, Jurecekova E, Hudec J, Jurecek L (2001) Dehydration of C4 alkanols conjugated with a positional and skeletal isomerisation of the formed C4 alkenes. Appl Catal A 214:251–257CrossRefGoogle Scholar
  81. Maddox IS, Steiner E, Hirsch S, Wessner S, Gutierrez NA, Gapes JR, Schuster KC (2000) The cause of “acid crash” and “acidogenic fermentations” during the batch acetone–butanol–ethanol (ABE) fermentation process. J Mol Microbiol Biotechnol 2(1):95–100PubMedGoogle Scholar
  82. Makarova MA, Williams C, Thomas JM, Zamarev KI (1990) Dehydration of n-butanol on HNa-ZSM-5. Catal Lett 4:261–264CrossRefGoogle Scholar
  83. Makarova MA, Paukshtis EA, Thomas JM, Williams C, Zamaraev KI (1994) Dehydration of n-butanol on zeolite H-ZSM-5 and amorphous aluminosilicate: detailed mechanistic study and the effect of pore confinement. J Catal 149:36–51CrossRefGoogle Scholar
  84. Malaviya A, Jang YS, Lee SY (2011) Continuous butanol production with reduced byproducts formation from glycerol by a hyper producing mutant of Clostridium pasteurianum. Appl Microbiol Biotechnol. doi: 10.1007/s00253-011-3629-0 PubMedGoogle Scholar
  85. Mariano AP, Costa CBB, Angelis DF, Filho RM (2010) Dynamics of a continuous flash fermentation for butanol production. Chem Eng Trans 10:285–290Google Scholar
  86. Matsumura M, Kataoka H, Sueki M, Araki K (1998) Energy saving effect of pervaporation using oleyl alcohol liquid membrane in butanol purification. Bioprocess Biosyst Eng 3(2):93–100Google Scholar
  87. Mohagheghi A, Ruth M, Schell DJ (2006) Conditioning hemicellulose hydrolysates for fermentation: effects of overliming pH on sugar and ethanol yields. Process Biochem 41:1806–1811CrossRefGoogle Scholar
  88. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technol 96(6):673–686CrossRefGoogle Scholar
  89. Munday EB, Mullins JC, Edie DD (1980) Vapor-pressure data for toluene, 1-pentanol, 1-butanol, water, and 1-propanol and for the water and 1-propanol system from 273.15-K to 323.15-K. J Chem Eng Data 25:191–204CrossRefGoogle Scholar
  90. Nair RV, Green EM, Watson DE, Bennett GN, Papoutskis ET (1999) Regulation of the sol locus genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824 by a putative transcriptional repressor. J Bacteriol 181:319–330PubMedGoogle Scholar
  91. Napoli F, Olivieri G, Russo ME, Marzocchella A, Salatino P (2010) Butanol production by Clostridium acetobutylicum in a continuous packed bed reactor. J Ind Microbiol Biotechnol 37:603–608PubMedCrossRefGoogle Scholar
  92. Nielsen DR, Leonard E, Yoon SH, Tseng HC, Yuan C, Prather KLJ (2009) Engineering alternative butanol production platforms in heterologous bacteria. Metab Eng 11:262–273PubMedCrossRefGoogle Scholar
  93. O’Lenick AJ (2001) Guerbet chemistry. J Surfactants Deterg 4:311–315CrossRefGoogle Scholar
  94. Oudshoorn A, Van der Wielen LAM, Straathof AJJ (2009) Assessment of options for selective 1-butanol recovery from aqueous solution. Ind Eng Chem Res 48:7325–7336CrossRefGoogle Scholar
  95. Oudshoorn A, Peters MCFM, Van der Wielen LAM, Straathof AJJ (2011) Exploring the potential of recovering 1-butanol from aqueous solutions by liquid demixing upon addition of carbohydrates or salts. J Chem Technol Biotechnol 86:714–718CrossRefGoogle Scholar
  96. Patakova P, Maxa D, Rychtera M, Linhova M, Fribert P, Muzikova Z, Lipovsky J et al (2011) Perspectives of biobutanol production and use. In: dos Santos Bernardes MA (ed) Biofuel’s engineering process technology. InTech, Croatia, pp 243–266Google Scholar
  97. Pienkos PT, Zhang M (2009) Role of pretreatment and conditioning processes on toxicity of lignocellulosic biomass hydrolysates. Cellulose 16:743–762CrossRefGoogle Scholar
  98. Qureshi N, Schripsema J, Lienhardt J, Blaschek HP (2000) Continuous solvent production by Clostridium beijerinckii BA101 immobilized by adsorption onto brick. World J Microbiol Biotechnol 16:377–382CrossRefGoogle Scholar
  99. Qureshi N, Lai L, Blaschek H (2004) Scale-up of a high productivity continuous biofilm reactor to produce butanol by adsorbed cells of Clostridium beijerinckii. Food Bioprod Process 82(2):164–173CrossRefGoogle Scholar
  100. Qureshi N, Annous BA, Ezeji TC, Karcher P (2005) Maddox IS biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates. Microb Cell Factories 4:24CrossRefGoogle Scholar
  101. Qureshi N, Saha BC, Cotta MA (2007) Butanol production from wheat straw hydrolysate using Clostridium beijerinckii. Bioproc Biosyst Eng 30:419–427CrossRefGoogle Scholar
  102. Qureshi N, Saha BC, Hector RE, Hughes SR, Cotta MA (2008a) Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: part I—batch fermentation. Biomass Bioenergy 32:168–175CrossRefGoogle Scholar
  103. Qureshi N, Saha BC, Cotta MA (2008b) Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: part II—fed-batch fermentation. Biomass Bioenergy 32:176–183CrossRefGoogle Scholar
  104. Qureshi N, Ezeji TC, Ebener J, Dien BS, Cotta MA, Blaschek HP (2008c) Butanol production by Clostridium beijerinckii. Part I: use of acid and enzyme hydrolyzed corn fiber. Bioresour Technol 99:5915–5922PubMedCrossRefGoogle Scholar
  105. Qureshi N, Saha BC, Hector RE, Cotta MA (2008d) Removal of fermentation inhibitors from alkaline peroxide pretreated and enzymatically hydrolyzed wheat straw: production of butanol from hydrolysate using Clostridium beijerinckii in batch reactors. Biomass Bioenergy 32:1353–1358CrossRefGoogle Scholar
  106. Qureshi N, Saha BC, Dien B, Hector RE, Cotta MA (2010a) Production of butanol (a biofuel) from agricultural residues: part I —use of barley straw hydrolysate. Biomass Bioenergy 34(4):559–565CrossRefGoogle Scholar
  107. Qureshi N, Saha BC, Hector RE, Dien B, Hughes S, Liu S, Iten L, Bowman MJ, Sarath G, Cotta MA (2010b) Production of butanol (a biofuel) from agricultural residues: part II—use of corn stover and switchgrass hydrolysates. Biomass Bioenergy 34(4):566–571Google Scholar
  108. Rakkolainen M, Iakovlev M, Teräsvuori A-L, Sklavounos E, Jurgens G, Granström TB, van Heiningen A (2010) SO2/ethanol/water fractionation of forest biomass and implications for biofuel production by ABE fermentation. Cellul Chem Technol 44(4–6):139–145Google Scholar
  109. Ranatunga TD, Jervis J, Helm RF, McMillan JD, Wooley RJ (2000) The effect of overliming on the toxicity of dilute acid pretreated lignocellulosics: the role of inorganics,uronic acids and ether- soluble organics. Enzyme Microb Technol 27:240–247PubMedCrossRefGoogle Scholar
  110. Ranjan A, Moholkar VS (2011) Comparative study of various pretreatment techniques for rice straw saccharification for the production of alcoholic biofuels. Fuel. doi: 10.1016/j.fuel.2011.03.030 Google Scholar
  111. Ravagnani A, Jennert KC, Steiner E, Grünberg R, Jefferies JR, Wilkinson SR, Young DI, Tidswell EC, Brown DP, Youngman P et al (2000) Spo0A directly controls the switch from acid to solvent production in solvent-forming clostridia. Mol Microbiol 37:1172–1185PubMedCrossRefGoogle Scholar
  112. Retsina T, Pylkkänen V (2007a) Back to the biorefinery: a novel approach to boost pulp mill profits. Paper 360°, pp 18–19 (February issue)Google Scholar
  113. Retsina T, Pylkkänen V (2007b) Method for the production of fermentable sugars and cellulose form lignocellulosic material. US patent US 2007/0254348 A1Google Scholar
  114. Rogers P, Chen J-S, Zidwick MJ (2006) Organic acid and solvent production (Part III): butanol, acetone and isopropanol. In: Dworkin M (ed) The prokaryotes, 3rd edn. Springer, New YorkGoogle Scholar
  115. Savrasova EA, Kivero AD, Shakulov RS, Stoynova NV (2011) Use of the valine biosynthetic pathway to convert glucose into isobutanol. J Ind Microbiol Biotechnol 38:1287–1294PubMedCrossRefGoogle Scholar
  116. Schiel B, Böhringer M, Schaffer S, Dürre P (2003) Identification and characterization of a potential transcriptional regulator of the acetoacetate decarboxylase gene of Clostridium acetobutylicum. Biospektrum Special Issue, KB003:39Google Scholar
  117. Seregina TA, Shakulov RS, Debabov VG, Mironov AS (2009) Construction E. coli strain, producing butyrate without using of foreign genes. Biotechnology 6:26–37 (in Russian)Google Scholar
  118. Shamsudin S, Kalil MSH, Yusoff WMW (2006) Production of acetone, butanol and ethanol (ABE) by Clostridium saccharoperbutylacetonicum N1-4 with different immobilization systems. Pak J Biol Sci 9(10):1923–1928CrossRefGoogle Scholar
  119. Shen CR, Liao JC (2008) A synthetic iterative pathway for ketoacid elongation. Metab Eng 10:312–320PubMedCrossRefGoogle Scholar
  120. Shen Y, Ko A, Grange P (1990) Study of phosphorus-modified aluminum pillared montmorillonite: I. Effect of the nature of phosphorus compounds. Appl Catal 67:93–106CrossRefGoogle Scholar
  121. Shen CR, Lan EI, Dekishima Y, Baez A, Cho KM, Liao JC (2011) Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl Environ Microbiol 77:2905–2915PubMedCrossRefGoogle Scholar
  122. Sikkema J, Debont JAM, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–209PubMedGoogle Scholar
  123. Simoni LD, Chapeaux A, Brennecke JF, Stadtherr MA (2010) Extraction of biofuels and biofeedstocks from aqueous solutions using ionic liquids. Comput Chem Eng 34:1406–1412CrossRefGoogle Scholar
  124. Sklavounos E, Iakovlev M, Yamamoto M, Teräsvuori L, Jurgens G, Granström T, van Heiningen A (2011) Conditioning of SO2–ethanol–water spent liquor from spruce for the production of chemicals by ABE fermentation. Holzforschung 65(4):551–558CrossRefGoogle Scholar
  125. Sonomoto K, Oshiro M, Hanada K, Tashiro Y (2010) Efficient conversion of lactic acid to butanol with pH-stat continuous lactic acid and glucose feeding method by Clostridium saccharoperbutylacetonicum. Appl Microbiol Biotechnol 87(3):1177–1185PubMedCrossRefGoogle Scholar
  126. Standfest T, Nold N, Schiel B, Dürre P (2009) CodY, a potential repressor of butanol formation in Clostridium acetobutylicum. Biospektrum Special Issue, PS21:174Google Scholar
  127. Steen EJ, Chan R, Prasad N, Myers S, Petzold CJ, Redding A, Ouellet M, Keasling JD (2008) Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microb Cell Fact 7:36PubMedCrossRefGoogle Scholar
  128. Sun Z, Liu S (2011) Production of n-butanol from concentrated sugar maple hemicellulosic hydrolysate by Clostridia acetobutylicum ATCC824. Biomass Bioenerg. doi: 10.1016/j.biombioe.2010.07.026 Google Scholar
  129. Sun Y, Jin Y, Gao X, Li X, Xiao Y, Yao Z (2010) Effects of byproducts from acid hydrolysis of lignocelluloses on butanol fermentation by Clostridium acetobutylicum CICC8012. Yingyong Yu Huanjing Shengwu Xuebao 16(6):845–850Google Scholar
  130. Survase SA, Sklavounos E, Jurgens G, van Heiningen A, Granström T (2011a) Continuous acetone–butanol–ethanol fermentation using SO2ethanol–water spent liquor from spruce. Bioresour Technol 102(23):10996–11002PubMedCrossRefGoogle Scholar
  131. Survase SA, van Heiningen A, Granström T (2011b) Continuous bio-catalytic conversion of sugar mixture to acetone–butanol–ethanol by immobilized C. acetobutylicum DSM 792. Appl Microbiol Biotechnol. doi:  10.1007/s00253-011-3761-x
  132. Survase SA, Jurgens G, Van Heiningen A, Granström T (2011c) Continuous production of isopropanol and butanol using Clostridium beijerinckii DSM 6423. Appl Microbiol Biotechnol 91(5):1305–1313PubMedCrossRefGoogle Scholar
  133. Swana J, Yang Y, Behnam M, Thompson R (2011) An analysis of net energy production and feedstock availability for biobutanol and bioethanol. Bioresour Technol 102:2112–2117PubMedCrossRefGoogle Scholar
  134. Tangney M, Mitchell WJ (2000) Analysis of catabolic operon for sucrose transport and metabolism in Clostridium acetobutylicum ATCC 824. J Mol Microbiol Biotechnol 2:71–80PubMedGoogle Scholar
  135. Tashiro Y, Takeda K, Kobayashi G, Sonomoto K, Ishizaki A, Yoshino S (2004) High butanol production by Clostridium saccharoperbutylacetonicum N1-4 in fed-batch culture with pH-stat continuous butyric acid and glucose feeding method. J Biosci Bioeng 98:263–268PubMedGoogle Scholar
  136. Tashiro Y, Takeda K, Kobayashi G, Sonomoto K (2005) High production of acetone–butanol–ethanol with high cell density culture by cell-recycling and bleeding. J Biotechnol 120:197–206PubMedCrossRefGoogle Scholar
  137. Thomas J, Bruno TJ, Wolk A, Naydich A (2009) Composition-explicit distillation curves for mixtures of with four-carbon alcohols (butanols) gasoline. Energy Fuel 23(4):2295–2306CrossRefGoogle Scholar
  138. Tomas CA, Welker NE, Papoutsakis ET (2003) Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell’s transcriptional program. Appl Environ Microbiol 69:4951–4965PubMedCrossRefGoogle Scholar
  139. Tripathi A, Sami H, Jain SR, Viloria-Cols M, Zhuravleva N, Nilsson G, Jungvid H, Kumar A (2010) Improved bio-catalytic conversion by novel immobilization process using cryogel beads to increase solvent production. Enzym Microb Technol 47:44–51CrossRefGoogle Scholar
  140. U.S. Department of Energy (2011) U.S. Billion-ton update: biomass supply for a bioenergy and bioproducts industry. Perlack RD, Stokes BJ (Leads) ORNL/TM-2011/224. Oak Ridge National Laboratory, Oak Ridge, p 227Google Scholar
  141. Van Heiningen A (2006) Converting a kraft pulp mill into an integrated forest biorefinery. Pulp Pap-Canada 107(6):38-43Google Scholar
  142. Van Heiningen A, Iakovlev M, Yamamoto M, Sklavounos E, Melin K, Granström T (2011) Which fractionation process can overcome techno-economic hurdles of a lignocellulosic biorefinery? AIChE Annual Meeting. In: Conference proceedings, MinneapolisGoogle Scholar
  143. Wang Y, Blaschek HP (2011) Optimization of butanol production from tropical maize stalk juice by fermentation with Clostridium beijerinckii NCIMB 8052. Bioresour Technol 102(21):9985–9990PubMedCrossRefGoogle Scholar
  144. Wang L, Chen H (2011) Increased fermentability of enzymatically hydrolyzed steam-exploded corn stover for butanol production by removal of fermentation inhibitors. Process Biochem 46(2):604–607Google Scholar
  145. Wang S, Zhang Y, Dong H, Mao S, Zhu Y, Wang R, Luan G, Li Y (2011) Formic acid triggers the “Acid Crash” of acetone–butanol–ethanol fermentation by Clostridium acetobutylicum. Appl Environ Microbiol 77(5):1674–1680PubMedCrossRefGoogle Scholar
  146. Woodley JM, Bisschops M, Straathof AJJ, Ottens M (2008) Future directions for in situ product removal (ISPR). J Chem Technol Biotechnol 83:121–131CrossRefGoogle Scholar
  147. Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 96(18):1959–1966PubMedCrossRefGoogle Scholar
  148. Yamamoto M, Iakovlev M, van Heiningen A (2011) Total mass balances of SO2–ethanol–water (SEW) fractionation of forest biomass. Holzforschung 65(4):559–565CrossRefGoogle Scholar
  149. Yan Y, Liao JC (2009) Engineering metabolic systems for production of advanced fuels. J Ind Microbiol Biotechnol 36:471–479PubMedCrossRefGoogle Scholar
  150. Yen HW, Li RJ (2011) The effects of dilution rate and glucose concentration on continuous acetone–butanol–ethanol fermentation by Clostridium acetobutylicum immobilized on bricks. J Chem Technol Biotechnol 86(11):1399–1404CrossRefGoogle Scholar
  151. Zhang Y, Ma Y, Yang F, Zhang C (2009) Continuous acetone–butanol–ethanol production by corn stalk immobilized cells. J Ind Microbiol Biotechnol 36:1117–1121PubMedCrossRefGoogle Scholar
  152. Zhang D, Al-Hajri R, Marri SAI, Chadwick D (2010) One-step dehydration and isomerisation of n-butanol to iso-butanol over zeolite catalysts. Chem Commun 46:4088–4090CrossRefGoogle Scholar
  153. Zhao Y, Hindorff LA, Chuang A, Monroe-Augustus M, Lyristis M, Harrison ML, Rudolph FB, Bennett GN (2003) Expression of a cloned cyclopropane fatty acid synthase gene reduces solvent formation in Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 69:2831–2841PubMedCrossRefGoogle Scholar
  154. Zhu JY, Pan XJ (2010) Woody biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation. Bioresource Technol 101(13):4992–5002CrossRefGoogle Scholar
  155. Zhu JY, Pan X, Zalesny RS Jr (2010) Pretreatment of woody biomass for biofuel production: energy efficiency, technologies, and recalcitrance. Appl Microbiol Biotechnol 87(3):847–857PubMedCrossRefGoogle Scholar
  156. Zotov RA, Molchanov VV, Goidin VV, Moroz EM, Volodin AM (2010) Preparation and characterization of modified aluminum oxide catalysts. Kinet Catal 51:139–142CrossRefGoogle Scholar
  157. Zverlov VV, Berezina O, Velikodvorskaya GA, Schwarz WH (2006) Bacterial acetone and butanol production by industrial fermentation in the Soviet Union: use of hydrolyzed agricultural waste for biorefinery. Appl Microbiol Biotechnol 71:587–597PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • German Jurgens
    • 1
  • Shrikant Survase
    • 1
  • Oxana Berezina
    • 2
  • Evangelos Sklavounos
    • 3
  • Juha Linnekoski
    • 1
  • Antti Kurkijärvi
    • 1
  • Minna Väkevä
    • 1
  • Adriaan van Heiningen
    • 3
    • 4
  • Granström Tom 
    • 1
    Email author
  1. 1.Department of Biotechnology and Chemical TechnologyAalto UniversityEspooFinland
  2. 2.State Research Institute of Genetics and Selection of Industrial MicroorganismsMoscowRussian Federation
  3. 3.Department of Forest Products ChemistryAalto UniversityEspooFinland
  4. 4.Department of Chemical and Biological EngineeringUniversity of MaineOronoUSA

Personalised recommendations