Biotechnology Letters

, Volume 34, Issue 6, pp 1115–1121 | Cite as

Improving the acidic stability of a methyl parathion hydrolase by changing basic residues to acidic residues

  • Lu Huang
  • Ping Wang
  • Jian Tian
  • Huachen Jiang
  • Ningfeng Wu
  • Peilong Yang
  • Bin Yao
  • Yunliu Fan
Original Research Paper

Abstract

The acidic stability of a methyl parathion hydrolase (Ochr-MPH) was improved by selectively changing basic amino acids to acidic ones. Mutation sites were selected based on the position-specific amino acid replacement probabilities (more than or equal to 0.2) and the entropy of each site (more than or equal to 0.8). Three mutants (K208E, K277D, and K208E/K277D) were more stable than the wild-type (WT). Their half-lives at pH 5.0 were 64, 68, 65 min, respectively, whereas that of WT was 39 min. The acidic stability of proteins may therefore be improved by changing selected basic amino acid residues to acidic ones.

Keywords

Acidic amino acid Acidic stability Methyl parathion hydrolase Site-directed mutagenesis 

Supplementary material

10529_2012_882_MOESM1_ESM.doc (551 kb)
Supplementary material 1 (DOC 551 kb)

References

  1. Bonisch H, Schmidt CL, Schafer G, Ladenstein R (2002) The structure of the soluble domain of an archaeal Rieske iron-sulfur protein at 1.1 A resolution. J Mol Biol 319:791–805PubMedCrossRefGoogle Scholar
  2. Brooks BR, Brooks CL 3rd, Mackerell AD Jr, Nilsson L et al (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614PubMedCrossRefGoogle Scholar
  3. Chen J, Brooks CL 3rd, Khandogin J (2008) Recent advances in implicit solvent-based methods for biomolecular simulations. Curr Opin Struct Biol 18:140–148PubMedCrossRefGoogle Scholar
  4. Chu X, Wu N, Deng M, Tian J, Yao B, Fan Y (2006) Expression of organophosphorus hydrolase OPHC2 in Pichia pastoris: purification and characterization. Protein Expr Purif 49:9–14PubMedCrossRefGoogle Scholar
  5. Chu X, Tian J, Wu N, Fan Y (2010) An intramolecular disulfide bond is required for the thermostability of methyl parathion hydrolase, OPHC2. Appl Microbiol Biotechnol 88:125–131PubMedCrossRefGoogle Scholar
  6. Dong Y, Bartlam M, Sun L, Zhou Y, Zhang Z, Zhang C, Rao Z, Zhang X (2005) Crystal structure of methyl parathion hydrolase from Pseudomonas sp. WBC-3. J Mol Boil 353:655–663CrossRefGoogle Scholar
  7. Fushinobu S, Ito K, Konno M, Wakagi T, Matsuzawa H (1998) Crystallographic and mutational analyses of an extremely acidophilic and acid-stable xylanase: biased distribution of acidic residues and importance of Asp37 for catalysis at low pH. Protein Eng 11:1121–1128PubMedCrossRefGoogle Scholar
  8. Huang Y, Krauss G, Cottaz S, Driguez H, Lipps G (2005) A highly acid-stable and thermostable endo-beta-glucanase from the thermoacidophilic archaeon Sulfolobus solfataricus. Biochem J 385:581–588PubMedCrossRefGoogle Scholar
  9. Shirai T, Suzuki A, Yamane T, Ashida T, Kobayashi T, Hitomi J, Ito S (1997) High-resolution crystal structure of M-protease: phylogeny aided analysis of the high-alkaline adaptation mechanism. Protein Eng 10:627–634PubMedCrossRefGoogle Scholar
  10. Spassov VZ, Yan L (2008) A fast and accurate computational approach to protein ionization. Protein Sci 17:1955–1970PubMedCrossRefGoogle Scholar
  11. Tian J, Wu N, Guo X, Guo J, Zhang J, Fan Y (2007) Predicting the phenotypic effects of non-synonymous single nucleotide polymorphisms based on support vector machines. BMC Bioinformatics 8:450PubMedCrossRefGoogle Scholar
  12. Tian J, Wang P, Gao S, Chu X, Wu N, Fan Y (2010) Enhanced thermostability of methyl parathion hydrolase from Ochrobactrum sp. M231 by rationally engineering a glycine to proline mutation. FEBS J 277:4901–4908PubMedCrossRefGoogle Scholar
  13. Turunen O, Vuorio M, Fenel F, Leisola M (2002) Engineering of multiple arginines into the Ser/Thr surface of Trichoderma reesei endo-1,4-beta-xylanase II increases the thermotolerance and shifts the pH optimum towards alkaline pH. Protein Eng 15:141–145PubMedCrossRefGoogle Scholar
  14. Xiao W, Chu X, Tian J, Guo J, Wu N (2008) Cloning of a methyl parathion hydrolase gene from Ochrobactrum sp. J Agric Sci Technol 10:99–102 In ChineseGoogle Scholar
  15. Yang J, Yang C, Jiang H, Qiao C (2008) Overexpression of methyl parathion hydrolase and its application in detoxification of organophosphates. Biodegradation 19:831–839PubMedCrossRefGoogle Scholar
  16. Yang C, Freudl R, Qiao C, Mulchandani A (2010) Cotranslocation of methyl parathion hydrolase to the periplasm and of organophosphorus hydrolase to the cell surface of Escherichia coli by the Tat pathway and ice nucleation protein display system. Appl Environ Microbiol 76:434–440PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Lu Huang
    • 1
    • 2
  • Ping Wang
    • 2
  • Jian Tian
    • 2
  • Huachen Jiang
    • 2
  • Ningfeng Wu
    • 2
  • Peilong Yang
    • 1
  • Bin Yao
    • 1
  • Yunliu Fan
    • 2
  1. 1.Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research InstituteChinese Academy of Agricultural SciencesBeijingPeople’s Republic of China
  2. 2.Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingPeople’s Republic of China

Personalised recommendations