Biotechnology Letters

, Volume 34, Issue 6, pp 995–1002 | Cite as

Genetic engineering of crop plants for fungal resistance: role of antifungal genes



Fungal diseases damage crop plants and affect agricultural production. Transgenic plants have been produced by inserting antifungal genes to confer resistance against fungal pathogens. Genes of fungal cell wall-degrading enzymes, such as chitinase and glucanase, are frequently used to produce fungal-resistant transgenic crop plants. In this review, we summarize the details of various transformation studies to develop fungal resistance in crop plants.


Agrobacterium-mediated Chitinase Fungal resistance Glucanase Transgenic plants 


  1. Akiyama T, Pillai MA, Sentoku N (2004) Cloning, characterization and expression of OsGLN2, a rice endo-1,3-beta-glucanase gene regulated developmentally in flowers and hormonally in germinating seeds. Planta 220:129–139PubMedCrossRefGoogle Scholar
  2. Anuradha TS, Divya K, Jami SK, Kirti PB (2008) Transgenic tobacco and peanut plants expressing a mustard defensin show resistance to fungal pathogens. Plant Cell Rep 27:1777–1786CrossRefGoogle Scholar
  3. Carstens M, Vivier MA, Pretorius IS (2003) The Saccharomyces cerevisiae chitinase, encoded by the CTS1–2 gene, confers antifungal activity against Botrytis cinerea to transgenic tobacco. Transgenic Res 12:497–508PubMedCrossRefGoogle Scholar
  4. Chai B, Maqbool SB, Hajela RK, Green D, Vargas JM, Warkentin D, Sabzikar R, Sticklen MB (2002) Cloning of a chitinase-like cDNA (hs2), its transfer to creeping bentgrass (Agrostis palustris Huds.) and development of brown patch (Rhizoctonia solani) disease resistant transgenic lines. Plant Sci 163:183–193CrossRefGoogle Scholar
  5. Chang M, Culley D, Choi JJ, Hadwiger LA (2002) Agrobacterium-mediated co-transformation of a pea β-1,3-glucanase and chitinase genes in potato (Solanum tuberosum L. c.v. Russet Burbank) using a single selectable marker. Plant Sci 163:83–89CrossRefGoogle Scholar
  6. Chen SC, Liu AR, Zou ZR (2006) Overexpression of glucanase gene and defensin gene in transgenic tomato enhances resistance to Ralstonia solanacearum. Plant Sci 5:2134–2140Google Scholar
  7. Cheong YH, Kim CY, Chun HJ, Moon BC, Park HC, Kim JK, Lee SY, Cho MJ (2000) Molecular cloning of a soybean class III β-1,3-glucanase gene that is regulated both developmentally and in response to pathogen infection. Plant Sci 154:71–81PubMedCrossRefGoogle Scholar
  8. Chye M, Zhao K, He Z, Ramalingam S, Fung K (2005) An agglutinating chitinase with two chitin-binding domains confers fungal protection in transgenic potato. Planta 220:717–730PubMedCrossRefGoogle Scholar
  9. Coca M, Bortolotti C, Rufat M, Peñas G, Eritja R, Tharreau D, Martinez del Pozo A, Messeguer J, Segundo SB (2004) Transgenic rice plants expressing the antifungal AFP protein from Aspergillus giganteus show enhanced resistance to the rice blast fungus Magnaporthe grisea. Plant Mol Biol 54:245–259PubMedCrossRefGoogle Scholar
  10. Coca M, Peñas G, Gómez J, Campo S, Bortolotti C, Messeguer J, San Segundo B (2006) Enhanced resistance to the rice blast fungus Magnaporthe grisea conferred by expression of a cecropin A gene in transgenic rice. Planta 223:392–406PubMedCrossRefGoogle Scholar
  11. Datta K, Tu J, Oliva N, Ona I, Velazhahan R, Mew TW, Muthukrishnan S, Datta SK (2001) Enhanced resistance to sheath blight by constitutive expression of infection- related rice chitinase in transgenic elite indica rice cultivars. Plant Sci 160:405–414PubMedCrossRefGoogle Scholar
  12. Girgi M, Breese WA, Lorz H, Oldach KH (2006) Rust and downy mildew resistance in pearl millet (Pennisetum glaucum) mediated by heterologous expression of the afp gene from Aspergillus giganteus. Transgenic Res 15:313–324PubMedCrossRefGoogle Scholar
  13. Grover A, Gowthaman R (2003) Strategies for development of fungus-resistant transgenic plants. Curr Sci 84:330–340Google Scholar
  14. Hassan F, Meens J, Jacobsen H, Kiesecker H (2009) A family 19 chitinase (Chit30) from Streptomyces olivaceoviridis ATCC 11238 expressed in transgenic pea affects the development of T. harzianum in vitro. J Biotechnol 143:302–330PubMedCrossRefGoogle Scholar
  15. He X, Miyasaka SC, Fitch MM, Moore PH, Zhu YJ (2008) Agrobacterium tumefaciens-mediated transformation of taro (Colocasia esculenta (L.) Schott) with a rice chitinase gene for improved tolerance to a fungal pathogen Sclerotium rolfsii. Plant Cell Rep 27:903–909PubMedCrossRefGoogle Scholar
  16. Ignacimuthu S, Ceasar SA (2012) Development of transgenic finger millet (Eleusine coracana (L.) Gaertn.) resistant to leaf blast disease. J Biosci. doi:10.1007/s12038-011-9178-y
  17. Islam A (2006) Fungus resistant transgenic plants: strategies, progress and lessons learnt. Plant Tissue Cult Biotechnol 16:117–138Google Scholar
  18. Kim JK, Duan X, Wu R, Seok SJ, Boston RS, Jang I-C (1999) Molecular and genetic analysis of transgenic rice plants expressing the maize ribosome-inactivating protein b-32 gene and the herbicide resistance bar gene. Mol Breed 5:85–94CrossRefGoogle Scholar
  19. Kim JK, Jang IC, Wu R, Zuo WN, Boston RS, Lee YH, Ahn IP, Nahm BH (2003) Co-expression of a modified maize ribosome-inactivating protein and a rice basic chitinase gene in transgenic rice plants confers enhanced resistance to sheath blight. Transgenic Res 12:475–484PubMedCrossRefGoogle Scholar
  20. Kishimoto K, Nishizawa Y, Tabei Y, Hibi T, Nakajima M, Akutsu K (2002) Detailed analysis of rice chitinase gene expression in transgenic cucumber plants showing different levels of disease resistance to gray mold (Botrytis cinerea). Plant Sci 162:655–662CrossRefGoogle Scholar
  21. Kumar KK, Poovannan K, Nandakumar R, Thamilarasi K, Geetha C, Jayashree N, Kokiladevi E, Raja JAJ, Samiyappan R, Sudhakar D, Balasubramanian P (2003) A high throughput functional expression assay system for a defense gene conferring transgenic resistance on rice against the sheath blight pathogen, Rhizoctonia solani. Plant Sci 165:969–976CrossRefGoogle Scholar
  22. Latha MA, Dasvantha Reddy V, Madavi Latha A, Venkateswara Rao K (2005) Production of transgenic plants resistant to leaf blast disease in finger millet (Eleusine coracana (L.) Gaertn.). Plant Sci 169:657–667CrossRefGoogle Scholar
  23. Latha MA, Rao KV, Reddy TP, Reddy VD (2006) Development of transgenic pearl millet (Pennisetum glaucum (L.) R. Br.) plants resistant to downy mildew. Plant Cell Rep 25:927–935PubMedCrossRefGoogle Scholar
  24. Li HY, Zhu YM, Chen Q, Conner RL, Ding XD, Zhang BB (2004) Production of transgenic soybean plants with two anti-fungal protein genes via Agrobacterium and particle bombardment. Biologia Plant 48:367–374CrossRefGoogle Scholar
  25. Mackintosh CA, Garvin DF, Radmer LE, Heinen SJ, Muehlbauer GJ (2006) A model wheat cultivar for transformation to improve resistance to fusarium head blight. Plant Cell Rep 25:313–319PubMedCrossRefGoogle Scholar
  26. Mei L, Zong-xiu S, Jei Z, Tong X, Gary EH, Matteo L (2004) Enhancing rice resistance to fungal pathogens by transformation with cell degrading enzyme genes from Trichoderma atroviride. J Zhejiang Uni Sci 5:133–136CrossRefGoogle Scholar
  27. Melander M, Kamnert I, Happstadius I, Liljeroth E, Bryngelsson T (2006) Stability of transgene integration and expression in subsequent generations of doubled haploid oilseed rape transformed with chitinase and β-1,3-glucanase genes in a double-gene construct. Plant Cell Rep 25:942–952PubMedCrossRefGoogle Scholar
  28. Mitani N, Kobayashi S, Nishizawa Y, Kuniga T, Matsumoto R (2006) Transformation of trifoliate orange with rice chitinase gene and the use of the transformed plant as a rootstock. Sci Hortic 108:439–441CrossRefGoogle Scholar
  29. Mondal KK, Bhattacharya RC, Koundal KR, Chatterjee SC (2007) Transgenic Indian mustard (Brassica juncea) expressing tomato glucanase leads to arrested growth of Alternaria brassicae. Plant Cell Rep 26:247–252PubMedCrossRefGoogle Scholar
  30. Moravcıkova J, Libantova J, Heldak J, Salaj JM, Matusıkova I, Galova Z, Mlynarov L (2007) Stress-induced expression of cucumber chitinase and Nicotiana plumbaginifolia β-1,3-glucanase genes in transgenic potato plants. Acta Physiol Plant 29:133–141CrossRefGoogle Scholar
  31. Moravčíková J, Matušíková I, Libantová J, Bauer M, Mlynárová L (2004) Expression of cucumber class III chitinase and Nicotiana plumbaginifolia class I glucanase genes in transgenic potato plants. Plant Cell Tissue Organ Cult 79:161–168CrossRefGoogle Scholar
  32. Nishizawa Y, Saruta M, Nakazono K, Nishio Z, Soma M, Yoshida T, Nakajima E, Hibi T (2003) Characterization of transgenic rice plants over-expressing the stress-inducible β-glucanase gene Gns1. Plant Mol Biol 51:143–152PubMedCrossRefGoogle Scholar
  33. Osusky M, Osuska L, Hancock RE, Kay W, Misra S (2004) Transgenic potatoes expressing a novel cationic peptide are resistant to late blight and pink rot. Trans Res 13:181–190CrossRefGoogle Scholar
  34. Raham SK, Rinaldi S, Ikuo N, Masahiro M (2008) Production of transgenic potato exhibiting enhanced resistance to fungal infections and herbicide applications. Plant Biotechnol Rep 2:13–20CrossRefGoogle Scholar
  35. Rohini VK, Rao KS (2001) Transformation of peanut (Arachis hypogaea L.) with tobacco chitinase gene: variable response of transformants to leaf spot disease. Plant Sci 160:889–898PubMedCrossRefGoogle Scholar
  36. Rommens CM, Kishore GM (2000) Exploiting the full potential of disease- esistance genes for agricultural use. Curr Opin Biotechnol 11:120–125PubMedCrossRefGoogle Scholar
  37. Sridevi G, Parameswari C, Sabapathi N, Raghupathy V, Veluthambi K (2008) Combined expression of chitinase and b-1,3-glucanase genes in indica rice (Oryza sativa L.) enhances resistance against Rhizoctonia solani. Plant Sci 175:283–290CrossRefGoogle Scholar
  38. Takakura Y, Ito T, Saito H, Inoue T, Komari T, Kuwata S (2000) Flower-predominant expression of a gene encoding a novel class I chitinase in rice (Oryza sativa L.). Plant Mol Biol 42:883–897PubMedCrossRefGoogle Scholar
  39. Takatsu Y, Nishizawa Y, Hibi T, Akutsu K (1999) Transgenic chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura) expressing a rice chitinase gene shows enhanced resistance to gray mold (Botrytis cinerea). Sci Hortic 82:13–123CrossRefGoogle Scholar
  40. Terakawa T, Takaya N, Horiuchi H, Koike M, Takagi M (1997) A fungal chitinase gene from Rhizopus oligosporus confers antifungal activity to transgenic tobacco. Plant Cell Rep 16:439–443Google Scholar
  41. Tobias DJ, Manoharan M, Pritsch C, Dahleen LS (2007) Co-bombardment, integration and expression of rice chitinase and thaumatin-like protein genes in barley (Hordeum vulgare cv.Conlon). Plant Cell Rep 26:631–639PubMedCrossRefGoogle Scholar
  42. Tohidfar MM, Mohammadi T, Ghareyazie B (2005) Agrobacterium-mediated transformation of cotton (Gossypium hirsutum) using a heterologous bean chitinase gene. Plant Cell Tissue Organ Cult 83:83–96CrossRefGoogle Scholar
  43. van der Biezen EA (2001) Quest for antimicrobial genes to engineer disease-resistant crops. Trends Plant Sci 6:89–91PubMedCrossRefGoogle Scholar
  44. Vellicce GR, Ricci JCD, Hernández L, Castagnaro AP (2006) Enhanced resistance to Botrytis cinerea mediated by the transgenic expression of the chitinase gene ch5B in strawberry. Transgen Res 15:57–68CrossRefGoogle Scholar
  45. Wally O, Jayaraj J, Punja Z (2009) Comparative resistance to foliar fungal pathogens in transgenic carrot plants expressing genes encoding for chitinase, β-1,3-glucanase and peroxidise. Eur J Plant Pathol 123:331–342CrossRefGoogle Scholar
  46. Wang Y, Kausch AP, Chandlee JM, Luo H, Ruemmele BA, Browning M, Jackson N, Goldsmith MR (2003) Co-transfer and expression of chitinase, glucanase, and bar genes in creeping bentgrass for conferring fungal disease resistance. Plant Sci 106:497–506CrossRefGoogle Scholar
  47. Wróbel-Kwiatkowska M, Lorenc-Kukula K, Starzycki M, Oszmiañski J, Kepczyñska E, Szopa J (2004) Expression of â-1, 3-glucanase in flax causes increased resistance to fungi: Physiol Mol. Plant Pathol 65:245–256Google Scholar
  48. Xiaotian M, Lijiang W, Chengcai AN, Huayi Y, Zhangliang C (2000) Resistance to rice blast (Pyricularia oryzae) caused by the expression of trichosanthin gene in transgenic rice plants transferred through Agrobacterium method. Chinese Sci Bulet 45:1774–1778Google Scholar
  49. Yamamoto T, Iketani H, Ieki H, Nishizawa Y, Notsuka K, Hibi T, Hayashi T, Matsuta N (2000) Transgenic grapevine plants expressing a rice chitinase with enhanced resistance to fungal pathogens. Plant Cell Rep 19:639–646CrossRefGoogle Scholar
  50. Zhu H, Xu X, Xiao G, Yuan L, Li B (2007) Enhancing disease resistances of super hybrid rice with four antifungal genes. Sci China C Life Sci 50:31–39PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Division of Plant Biotechnology, Entomology Research InstituteLoyola CollegeChennaiIndia

Personalised recommendations