Advertisement

Biotechnology Letters

, Volume 34, Issue 4, pp 611–618 | Cite as

Riboflavin production by Ashbya gossypii

  • Tatsuya Kato
  • Enoch Y. ParkEmail author
Review

Abstract

Riboflavin is an important nutrient for humans and animals. Industrial production has shifted completely from chemical synthesis to microbial fermentation. First generation riboflavin production was improved by a combination of traditional mutagenesis and genetic engineering, and isolated strains have been used in industry. As the DNA genome of riboflavin producers has the potential to reveal new technologies, DNA microarray, proteomic and metabolic analyses have been applied to the analysis of hyper-riboflavin producers. In this review, disparity mutagenesis technology is introduced as a means of improving riboflavin production by Ashbya gossypii. DNA microarray, proteomic and metabolic analyses of this high riboflavin producer are discussed, as well as recent riboflavin production trends, costs and future improvements.

Keywords

Ashbya gossypii DNA microarray Metabolic flux Riboflavin 

References

  1. Abe H, Fujita Y, Chiba Y, Jigami Y, Nakayama K (2009a) Upregulation of genes involved in gluconeogenesis and the glyoxylate cycle suppressed the drug sensitivity of an N-glycosylation-deficient Saccharomyces cerevisiae mutant. Biosci Biotechnol Biochem 73:1398–1403PubMedCrossRefGoogle Scholar
  2. Abe H, Fujita Y, Takaoka Y, Kurita E, Yanos S, Tanaka N, Nakayama K (2009b) Ethanol-tolerant Saccharomyces cerevisiae strains isolated under selective condition by overexpression of a proofreading-deficient DNA polymerase delta. J Biosci Bioeng 108:199–204PubMedCrossRefGoogle Scholar
  3. Abe H, Takaoka Y, Chiba Y, Sato N, Ohgiya S, Itadani A, Hirashima M, Shimoda C, Jigami Y, Nakayama K (2009c) Development of valuable yeast strains using a novel mutagenesis technique for the effective production of therapeutic glycoprotein. Glycobiology 19:428–436PubMedCrossRefGoogle Scholar
  4. Aoki K, Furusawa M (2001) Promotion of evolution by intracellular coexistence of mutator and normal DNA polymerases. J Theor Biol 209:213–222PubMedCrossRefGoogle Scholar
  5. Demain AL (1972) Riboflavin oversynthesis. Annu Rev Microbiol 26:369–388PubMedCrossRefGoogle Scholar
  6. Dietrich FS, Voegelli S, Brachat S, Lerch A, Gates K, Steiner S, Mohr C, Pöhlmann R, Luedi P, Choi S, Wing RA, Flavier A, Graffney TD, Philippsen P (2004) The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome. Science 304:304–307PubMedCrossRefGoogle Scholar
  7. Duan YX, Chen T, Chen X, Zhao XM (2010) Overexpression of glucose-6-phpsphate dehydrogenase enhances riboflavin production in Bacullus subtilis. Appl Microbiol Biotechnol 85:1907–1914PubMedCrossRefGoogle Scholar
  8. Föster C, Santos M, Ruffert S, Krämer R, Revuelta JL (1999) Physiological consequence of disruption of the VMA1 gene in the riboflavin overproducer Ashbya gossypii. J Biol Chem 274:9442–9448CrossRefGoogle Scholar
  9. Furusawa M, Doi H (1992) Promotion of evolution: disparity in the frequency of strand-specific misreading between the lagging and leading DNA strands enhances disproportionate accumulation of mutations. J Theor Biol 157:127–133PubMedCrossRefGoogle Scholar
  10. Furusawa M, Doi H (1998) Asymmetrical DNA replication promotes evolution: disparity theory of evolution. Genetica 102(103):333–347PubMedCrossRefGoogle Scholar
  11. Jiménez A, Santos MA, Pompejus M, Revuelta JL (2005) Metabolic engineering of the purine pathway for riboflavin production in Ashbya gossypii. Appl Environ Microbiol 71:5743–5751PubMedCrossRefGoogle Scholar
  12. Jiménez A, Santos MA, Revuelta JL (2008) Phosphoribosyl pyrophosphate synthase activity affects growth and riboflavin production in Ashbya gossypii. BMC Biotechnol 8:67PubMedCrossRefGoogle Scholar
  13. Karos M, Vilariño C, Bollschweiler C, Revuelta JL (2004) A genome-wide transcription analysis of a fungal riboflavin overproducer. J Biotechnol 113:69–76PubMedCrossRefGoogle Scholar
  14. Kato T, Park EY (2006) Expression of alanine: glyoxylate aminotransferase gene from Saccharomyces cerevisiae in Ashbya gossypii. Appl Microbiol Biotechnol 71:46–52PubMedCrossRefGoogle Scholar
  15. Mateos L, Jiménez A, Revuelta J, Santos M (2006) Purine biosynthesis, riboflavin production, and trophic phase span are controlled by a Myb-related transcription factor in the fungus Ashbya gossypii. Appl Environ Microbiol 72:5052–5060PubMedCrossRefGoogle Scholar
  16. Ming H, Lara Pizarro AV, Park EY (2003) Application of waste activated bleaching earth containing rapeseed oil on riboflavin production in the culture of Ashbya gossypii. Biotechnol Prog 19:410–417PubMedCrossRefGoogle Scholar
  17. Monschau N, Sahm H, Stahmann KP (1998) Threonine aldolase overexpression plus threonine supplementation enhanced riboflavin production in Ashbya gossypii. Appl Environ Microbiol 64:4283–4290PubMedGoogle Scholar
  18. Park EY, Zhang JH, Tajima S, Dwiarti L (2007) Isolation of Ashbya gossypii mutant for an improved riboflavin production targeting for biorefinery technology. J Appl Microbiol 103:468–476PubMedCrossRefGoogle Scholar
  19. Park EY, Ito Y, Nariyama M, Sugimoto T, Lies D, Kato T (2011) The improvement of riboflavin production in Ashbya gossypii via disparity mutagenesis and DNA microarray analysis. Appl Microbiol Biotechnol 91:1315–1326PubMedCrossRefGoogle Scholar
  20. Plaut GWE (1954) Biosynthesis of riboflavin I. Incorporation of 14C-labelled compounds into rings B and C. J Biol Chem 208:513–520PubMedGoogle Scholar
  21. Schlösser T, Schmidt G, Stahmann KP (2001) Transcriptional regulation of 3,4-dihydroxy-2-butanone 4-phosphate synthase. Microbiology 147:3377–3386PubMedGoogle Scholar
  22. Schlüpen C, Santos MA, Weber U, De Graaf A, Revuelta JL, Stahmann KP (2003) Disruption of the SHM2 gene, encoding one of two serine hydroxymethyltransferase isozymes, reduces the flux from glycine to serine in Ashbya gossypii. Biochem J 369:263–273PubMedCrossRefGoogle Scholar
  23. Schmidt G, Stahmann KP, Kaesler B, Sahm H (1996a) Correlation of isocitrate lyase activity and riboflavin formation in the riboflavin overproducer Ashbya gossypii. Microbiology 142:419–426CrossRefGoogle Scholar
  24. Schmidt G, Stahmann KP, Sahm H (1996b) Inhibition of purified isocitrate lyase identified itaconate and oxalate as potential antimetabolites for the riboflavin overproducer Ashbya gossypii. Microbiology 142:411–417CrossRefGoogle Scholar
  25. Shimoda C, Itadani A, Sugino A, Furusawa M (2006) Isolation of thermotolerant mutants by using proofreading-deficient DNA polymerase δ as an effective mutator in Saccharomyces cerevisiae. Genes Genet Syst 81:391–397PubMedCrossRefGoogle Scholar
  26. Stahmann KP, Revuelta JL, Seulberger H (2000) Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production. Appl Microbiol Biotechnol 53:509–516PubMedCrossRefGoogle Scholar
  27. Sugimoto T, Morimoto A, Nariyama M, Kato T, Park EY (2010) Isolation of an oxalate-resistant Ashbya gossypii strain and its improved riboflavin production. J Ind Microbiol Biotechnol 37:57–64PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Applied Biological ChemistryShizuoka UniversityShizuokaJapan
  2. 2.Graduate School of Science and TechnologyShizuoka UniversityShizuokaJapan

Personalised recommendations