Biotechnology Letters

, Volume 34, Issue 4, pp 655–661 | Cite as

Extracellular protease in Actinomycetes culture supernatants inhibits and detaches Staphylococcus aureus biofilm formation

  • Joo-Hyeon Park
  • Jin-Hyung Lee
  • Chang-Jin Kim
  • Jae-Chan Lee
  • Moo Hwan Cho
  • Jintae LeeEmail author
Original Research Paper


Bacterial biofilms are associated with chronic infections due to their resistance to antimicrobial agents. Staphylococcus aureus is a versatile human pathogen and can form biofilms on human tissues and diverse medical devices. To identify novel biofilm inhibitors of S. aureus, the supernatants from a library of 458 Actinomycetes strains were screened. The culture supernatants (1% v/v) of more than 10 Actinomycetes strains inhibited S. aureus biofilm formation by more than 80% without affecting the growth. The culture supernatants of these biofilm-reducing Actinomycetes strains contained a protease (equivalent to 0.1 μg proteinase K ml−1), which both inhibited S. aureus biofilm formation and detached pre-existing S. aureus biofilms. This study suggests that protease treatment could be a feasible tool to reduce and eradicate S. aureus biofilms.


Actinomycetes Biofilm Protease Staphylococcus aureus 



This research was supported by the Yeungnam University research grant. J.-H. Park was supported by the Human Resources Development Program of Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant (No:20104010100580) funded by the Korean Ministry of Knowledge Economy.

Supplementary material

10529_2011_825_MOESM1_ESM.docx (952 kb)
Supplementary material 1 (DOCX 953 kb)


  1. Bakkiyaraj D, Pandian SK (2010) In vitro and in vivo antibiofilm activity of a coral associated actinomycete against drug resistant Staphylococcus aureus biofilms. Biofouling 26:711–717PubMedCrossRefGoogle Scholar
  2. Boles BR, Horswill AR (2008) Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathog 4:e1000052PubMedCrossRefGoogle Scholar
  3. Boles BR, Horswill AR (2011) Staphylococcal biofilm disassembly. Trends Microbiol 19:449–455PubMedCrossRefGoogle Scholar
  4. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322PubMedCrossRefGoogle Scholar
  5. DeLong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci USA 89:5685–5689PubMedCrossRefGoogle Scholar
  6. Hentzer M et al (2002) Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology 148:87–102PubMedGoogle Scholar
  7. Hoffman LR, D’Argenio DA, MacCoss MJ, Zhang Z, Jones RA, Miller SI (2005) Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 436:1171–1175PubMedCrossRefGoogle Scholar
  8. Iwase T et al (2010) Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature 465:346–349PubMedCrossRefGoogle Scholar
  9. Lesic B et al (2007) Inhibitors of pathogen intercellular signals as selective anti-infective compounds. PLoS Pathog 3:1229–1239PubMedCrossRefGoogle Scholar
  10. Lowy FD (1998) Staphylococcus aureus infections. N Engl J Med 339:520–532PubMedCrossRefGoogle Scholar
  11. McNeil MM, Brown JM (1994) The medically important aerobic actinomycetes: epidemiology and microbiology. Clin Microbiol Rev 7:357–417PubMedGoogle Scholar
  12. O’Gara JP (2007) ica and beyond: biofilm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus. FEMS Microbiol Lett 270:179–188PubMedCrossRefGoogle Scholar
  13. Pratt LA, Kolter R (1998) Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30:285–293PubMedCrossRefGoogle Scholar
  14. Quiblier C, Zinkernagel AS, Schuepbach RA, Berger-Bächi B, Senn MM (2011) Contribution of SecDF to Staphylococcus aureus resistance and expression of virulence factors. BMC Microbiol 11:72PubMedCrossRefGoogle Scholar
  15. Sauer K, Cullen MC, Rickard AH, Zeef LAH, Davies DG, Gilbert P (2004) Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm. J Bacteriol 186:7312–7326PubMedCrossRefGoogle Scholar
  16. Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138PubMedCrossRefGoogle Scholar
  17. Tamaoka J, Komagata K (1984) Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128CrossRefGoogle Scholar
  18. Vuong C, Saenz HL, Götz F, Otto M (2000) Impact of the agr quorum-sensing system on adherence to polystyrene in Staphylococcus aureus. J Infect Dis 182:1688–1693PubMedCrossRefGoogle Scholar
  19. You J et al (2007) Inhibition of Vibrio biofilm formation by a marine actinomycete strain A66. Appl Microbiol Biotechnol 76:1137–1144PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Joo-Hyeon Park
    • 1
  • Jin-Hyung Lee
    • 1
  • Chang-Jin Kim
    • 2
  • Jae-Chan Lee
    • 2
  • Moo Hwan Cho
    • 1
  • Jintae Lee
    • 1
    Email author
  1. 1.School of Chemical EngineeringYeungnam UniversityGyeongsanRepublic of Korea
  2. 2.Biological Resource CenterKorea Research Institute of Bioscience and BiotechnologyDaejeonRepublic of Korea

Personalised recommendations