Biotechnology Letters

, Volume 34, Issue 4, pp 619–626 | Cite as

Reduced glutamine concentration improves protein production in growth-arrested CHO-DG44 and HEK-293E cells

  • Yashas Rajendra
  • Divor Kiseljak
  • Lucia Baldi
  • David L. Hacker
  • Florian M. Wurm
Original Research Paper


For most cultivated mammalian cells, glutamine is an essential medium component. However, glutamine consumption results in the production of ammonia, a cytotoxic byproduct. Here we investigated the effect of glutamine reduction on recombinant protein production and ammonia accumulation in transiently transfected CHO and HEK-293E cells maintained under conditions of growth arrest. Maximum transient recombinant protein yields were observed in HEK-293E cultures without glutamine and in CHO cultures with 2 mM glutamine. The initial concentration of glutamine correlated with the level of ammonia accumulation in each culture. For both a stable CHO-derived cell line and a polyclonal population of recombinant CHO cells grown under conditions of mild hypothermia, the highest volumetric protein productivity was observed in cultures without glutamine. Here, the level of ammonia accumulation also corresponded to the initial glutamine concentration. Our data demonstrate that reduction of glutamine in the medium is an effective approach to improve protein production in both transiently and stably transfected mammalian cells when applying conditions that reduce or arrest the growth of these cells.


Ammonia CHO-DG44 Glutamine HEK-293E Stable gene expression Transient gene expression 


  1. Altamirano C, Paredes C, Illanes A, Cairo JJ, Godia F (2004) Strategies for fed-batch cultivation of t-PA producing CHO cells: substitution of glucose and glutamine and rational design of culture medium. J Biotechnol 110(2):171–179PubMedCrossRefGoogle Scholar
  2. Altamirano C, Illanes A, Becerra S, Cairo JJ, Godia F (2006) Considerations on the lactate consumption by CHO cells in the presence of galactose. J Biotechnol 125(4):547–556PubMedCrossRefGoogle Scholar
  3. Andersen DC, Goochee CF (1995) The effect of ammonia on the O-linked glycosylation of granulocyte colony-stimulating factor produced by Chinese hamster ovary cells. Biotechnol Bioeng 47(1):96–105PubMedCrossRefGoogle Scholar
  4. Backliwal G, Hildinger M, Chenuet S, Wulhfard S, De Jesus M, Wurm FM (2008) Rational vector design and multi-pathway modulation of HEK-293E cells yield recombinant antibody titers exceeding 1 g/l by transient transfection under serum-free conditions. Nucleic Acids Res 36(15):e96PubMedCrossRefGoogle Scholar
  5. Borys MC, Linzer DI, Papoutsakis ET (1994) Ammonia affects the glycosylation patterns of recombinant mouse placental lactogen-I by Chinese hamster ovary cells in a pH-dependent manner. Biotechnol Bioeng 43(6):505–514PubMedCrossRefGoogle Scholar
  6. Canning WM, Fields BN (1983) Ammonium chloride prevents lytic growth of reovirus and helps to establish persistent infection in mouse L cells. Science 219(4587):987–988PubMedCrossRefGoogle Scholar
  7. Capiaumont J, Legrand C, Carbonell D, Dousset B, Belleville F, Nabet P (1995) Methods for reducing the ammonia in hybridoma cell cultures. J Biotechnol 39(1):49–58PubMedCrossRefGoogle Scholar
  8. Fitzpatrick L, Jenkins HA, Butler M (1993) Glucose and glutamine metabolism of a murine B-lymphocyte hybridoma grown in batch culture. Appl Biochem Biotechnol 43(2):93–116PubMedCrossRefGoogle Scholar
  9. Galbraith DJ, Tait AS, Racher AJ, Birch JR, James DC (2006) Control of culture environment for improved polyethylenimine-mediated transient production of recombinant monoclonal antibodies by CHO cells. Biotechnol Prog 22(3):753–762PubMedCrossRefGoogle Scholar
  10. Gawlitzek M, Conradt HS, Wagner R (1995) Effect of different cell culture conditions on the polypeptide integrity and N-glycosylation of a recombinant model glycoprotein. Biotechnol Bioeng 46(6):536–544PubMedCrossRefGoogle Scholar
  11. Gawlitzek M, Valley U, Wagner R (1998) Ammonium ion and glucosamine dependent increases of oligosaccharide complexity in recombinant glycoproteins secreted from cultivated BHK-21 cells. Biotechnol Bioeng 57(5):518–528PubMedCrossRefGoogle Scholar
  12. Greenblatt DY, Vaccaro AM, Jaskula-Sztul R, Ning L, Haymart M, Kunnimalaiyaan M, Chen H (2007) Valproic acid activates notch-1 signaling and regulates the neuroendocrine phenotype in carcinoid cancer cells. Oncologist 12(8):942–951PubMedCrossRefGoogle Scholar
  13. Hansen HA, Emborg C (1994) Influence of ammonium on growth, metabolism, and productivity of a continuous suspension Chinese hamster ovary cell culture. Biotechnol Prog 10(1):121–124PubMedCrossRefGoogle Scholar
  14. Hassell T, Gleave S, Butler M (1991) Growth inhibition in animal cell culture. The effect of lactate and ammonia. Appl Biochem Biotechnol 30(1):29–41PubMedCrossRefGoogle Scholar
  15. Ito M, McLimans WF (1981) Ammonia inhibition of interferon synthesis. Cell Biol Int Rep 5(7):661–666PubMedCrossRefGoogle Scholar
  16. Jeong YH, Wang SS (1992) In situ removal of ammonium ions from hybridoma cell culture media: selection of adsorbent. Biotechnol Technol 6(4):341–346CrossRefGoogle Scholar
  17. Meissner P, Pick H, Kulangara A, Chatellard P, Friedrich K, Wurm FM (2001) Transient gene expression: recombinant protein production with suspension-adapted HEK293-EBNA cells. Biotechnol Bioeng 75(2):197–203PubMedCrossRefGoogle Scholar
  18. Muller N, Girard P, Hacker DL, Jordan M, Wurm FM (2005) Orbital shaker technology for the cultivation of mammalian cells in suspension. Biotechnol Bioeng 89(4):400–406PubMedCrossRefGoogle Scholar
  19. Newsholme P, Procopio J, Lima MM, Pithon-Curi TC, Curi R (2003) Glutamine and glutamate—their central role in cell metabolism and function. Cell Biochem Funct 21(1):1–9PubMedCrossRefGoogle Scholar
  20. Ozturk SS, Riley MR, Palsson BO (1992) Effects of ammonia and lactate on hybridoma growth, metabolism, and antibody production. Biotechnol Bioeng 39(4):418–431PubMedCrossRefGoogle Scholar
  21. Rajendra Y, Kiseljak D, Baldi L, Hacker DL, Wurm FM (2011) A simple high-yielding process for transient gene expression in CHO cells. J Biotechnol 153(1–2):22–26PubMedCrossRefGoogle Scholar
  22. Reuveny S, Velez D, Macmillan JD, Miller L (1986) Factors affecting cell growth and monoclonal antibody production in stirred reactors. J Immunol Methods 86(1):53–59PubMedCrossRefGoogle Scholar
  23. Sami S, Hoti N, Xu HM, Shen Z, Huang X (2008) Valproic acid inhibits the growth of cervical cancer both in vitro and in vivo. J Biochem 144(3):357–362PubMedCrossRefGoogle Scholar
  24. Schmid G, Keller T (1992) Monitoring hybridoma metabolism in continuous suspension culture at the intracellular level. I. Steady-state responses to different glutamine feed concentrations. Cytotechnology 9(1–3):217–229PubMedCrossRefGoogle Scholar
  25. Schneider M, Marison IW, von Stockar U (1996) The importance of ammonia in mammalian cell culture. J Biotechnol 46(3):161–185PubMedCrossRefGoogle Scholar
  26. Thorens B, Vassalli P (1986) Chloroquine and ammonium chloride prevent terminal glycosylation of immunoglobulins in plasma cells without affecting secretion. Nature 321(6070):618–620PubMedCrossRefGoogle Scholar
  27. Tsao YS, Cardoso AG, Condon RG, Voloch M, Lio P, Lagos JC, Kearns BG, Liu Z (2005) Monitoring Chinese hamster ovary cell culture by the analysis of glucose and lactate metabolism. J Biotechnol 118(3):316–327PubMedCrossRefGoogle Scholar
  28. Vriezen N, Romein B, Luyben KC, van Dijken JP (1997) Effects of glutamine supply on growth and metabolism of mammalian cells in chemostat culture. Biotechnol Bioeng 54(3):272–286PubMedCrossRefGoogle Scholar
  29. Wulhfard S, Tissot S, Bouchet S, Cevey J, De Jesus M, Hacker DL, Wurm FM (2008) Mild hypothermia improves transient gene expression yields several fold in Chinese hamster ovary cells. Biotechnol Prog 24(2):458–465PubMedCrossRefGoogle Scholar
  30. Wulhfard S, Baldi L, Hacker DL, Wurm F (2010) Valproic acid enhances recombinant mRNA and protein levels in transiently transfected Chinese hamster ovary cells. J Biotechnol 148(2–3):128–132PubMedCrossRefGoogle Scholar
  31. Yang M, Butler M (2000a) Effects of ammonia on CHO cell growth, erythropoietin production, and glycosylation. Biotechnol Bioeng 68(4):370–380PubMedCrossRefGoogle Scholar
  32. Yang M, Butler M (2000b) Enhanced erythropoietin heterogeneity in a CHO culture is caused by proteolytic degradation and can be eliminated by a high glutamine level. Cytotechnology 34(1–2):83–99PubMedCrossRefGoogle Scholar
  33. Yang M, Butler M (2002) Effects of ammonia and glucosamine on the heterogeneity of erythropoietin glycoforms. Biotechnol Prog 18(1):129–138PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Yashas Rajendra
    • 1
  • Divor Kiseljak
    • 1
  • Lucia Baldi
    • 1
  • David L. Hacker
    • 1
  • Florian M. Wurm
    • 2
  1. 1.Laboratory for Cellular Biotechnology (LBTC)École Polytechnique Fédéral de Lausanne (EPFL)LausanneSwitzerland
  2. 2.EPFL SV-IBI-LBTCLausanneSwitzerland

Personalised recommendations