Biotechnology Letters

, Volume 34, Issue 2, pp 239–245

Photosystem I from plants as a bacterial cytochrome P450 surrogate electron donor: terminal hydroxylation of branched hydrocarbon chains

  • Kenneth Jensen
  • Jonathan B. Johnston
  • Paul R. Ortiz de Montellano
  • Birger Lindberg Møller
Original Research Paper

Abstract

The ability of cytochrome P450 enzymes to catalyze highly regio- and stereospecific hydroxylations makes them attractive alternatives to approaches based on chemical synthesis but they require expensive cofactors, e.g. NAD(P)H, which limits their commercial potential. Ferredoxin (Fdx) is a multifunctional electron carrier that in plants accepts electrons from photosystem I (PSI) and facilitates photoreduction of NADP+ to NADPH mediated by ferredoxin-NAD(P)H oxidoreductase (FdR). In bacteria, the electron flow is reversed and Fdx accepts electrons from NADPH via FdR and serves as the direct electron donor to bacterial P450s. By combining the two systems, we demonstrate that irradiation of PSI can drive the activity of a bacterial P450, CYP124 from Mycobacterium tuberculosis. The substitution of the costly cofactor NADPH with sunlight illustrates the potential of the light-driven hydroxylation system for biotechnology applications.

Keywords

Cytochrome P450 ω-hydroxylation Light-driven biosynthesis Lipid hydroxyllase Photosystem I 

References

  1. Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639PubMedCrossRefGoogle Scholar
  2. Cirino PC, Arnold FH (2003) A self-sufficient peroxide-driven hydroxylation biocatalyst. Angew Chem Int Edit 42:3299–3301CrossRefGoogle Scholar
  3. Denisov IG, Makris TM, Sligar SG, Schlichting I (2005) Structure and chemistry of cytochrome P450. Chem Rev 105:2253–2277PubMedCrossRefGoogle Scholar
  4. Furbank RT, Badger MR (1983) Oxygen exchange associated with electron transport and photophosphorylation in spinach thylakoids. Biochim Biophys Acta Bioenerg 723:400–409CrossRefGoogle Scholar
  5. Goni G, Zollner A, Lisurek M, Velazquez-Campoy A, Pinto S, Gomez-Moreno C, Hannemann F, Bernhardt R, Medina M (2009) Cyanobacterial electron carrier proteins as electron donors to CYP106A2 from Bacillus megaterium ATCC 13368. Biochim Biophys Acta 1794:1635–1642PubMedGoogle Scholar
  6. Ham MH, Choi JH, Boghossian AA, Jeng ES, Graff RA, Heller DA, Chang AC, Mattis A, Bayburt TH, Grinkova YV, Zeiger AS, Van Vliet KJ, Hobbie EK, Sligar SG, Wraight CA, Strano MS (2010) Photoelectrochemical complexes for solar energy conversion that chemically and autonomously regenerate. Nat Chem 2:929–936PubMedCrossRefGoogle Scholar
  7. Hannemann F, Bichet A, Ewen KM, Bernhardt R (2007) Cytochrome P450 systems–biological variations of electron transport chains. Biochim Biophys Acta 1770:330–344PubMedCrossRefGoogle Scholar
  8. Hollmann F, Witholt B, Schmid A (2002) [Cp*Rh(bpy)(H2O)](2 +): a versatile tool for efficient and non-enzymatic regeneration of nicotinamide and flavin coenzymes. J Mol Catal B Enzym 19:167–176CrossRefGoogle Scholar
  9. Jensen K, Møller BL (2010) Plant NADPH-cytochrome P450 oxidoreductases. Phytochemistry 71:132–141PubMedCrossRefGoogle Scholar
  10. Jensen K, Jensen PE, Møller BL (2011) Light-driven cytochrome P450 hydroxylations. ACS Chem Biol 6:533–539PubMedCrossRefGoogle Scholar
  11. Johnston JB, Kells PM, Podust LM, Ortiz de Montellano PR (2009) Biochemical and structural characterization of CYP124: a methyl-branched lipid omega-hydroxylase from Mycobacterium tuberculosis. Proc Natl Acad Sci USA 106:20687–20692PubMedCrossRefGoogle Scholar
  12. Johnston JB, Ouellet H, Ortiz de Montellano PR (2010) Functional redundancy of steroid C26-monooxygenase activity in Mycobacterium tuberculosis revealed by biochemical and genetic analyses. J Biol Chem 285:36352–36360PubMedCrossRefGoogle Scholar
  13. Joo H, Lin Z, Arnold FH (1999) Laboratory evolution of peroxide-mediated cytochrome P450 hydroxylation. Nature 399:670–673PubMedCrossRefGoogle Scholar
  14. Krishnan S, Wasalathanthri D, Zhao LL, Schenkman JB, Rusling JF (2011) Efficient bioelectronic actuation of the natural catalytic pathway of human metabolic cytochrome P450 s. J Am Chem Soc 133:1459–1465PubMedCrossRefGoogle Scholar
  15. Loughlin WA (2000) Biotransformations in organic synthesis. Bioresource Technol 74:49–62CrossRefGoogle Scholar
  16. Medina M, Hervas M, Navarro JA, De la Rosa MA, Gomez-Moreno C, Tollin G (1992) A laser flash absorption spectroscopy study of Anabaena sp. PCC 7119 flavodoxin photoreduction by photosystem I particles from spinach. FEBS Lett 313:239–242PubMedCrossRefGoogle Scholar
  17. Nath A, Atkins WM, Sligar SG (2007) Applications of phospholipid bilayer nanodiscs in the study of membranes and membrane proteins. Biochemistry 46:2059–2069PubMedCrossRefGoogle Scholar
  18. Naver H, Scott MP, Golbeck JH, Møller BL, Scheller HV (1996) Reconstitution of barley photosystem I with modified PSI-C allows identification of domains interacting with PSI-D and PSI-A/B. J Biol Chem 271:8996–9001PubMedCrossRefGoogle Scholar
  19. Ouellet H, Johnston JB, de Ortiz Montellano PR (2010) The Mycobacterium tuberculosis cytochrome P450 system. Arch Biochem Biophys 493:82–95PubMedCrossRefGoogle Scholar
  20. Powles SB (1984) Photoinhibition of photosynthesis induced by visible-light. Annu Rev Plant Phys 35:15–44CrossRefGoogle Scholar
  21. Reipa V, Mayhew MP, Vilker VL (1997) A direct electrode-driven P450 cycle for biocatalysis. Proc Natl Acad Sci USA 94:13554–13558PubMedCrossRefGoogle Scholar
  22. Scheller HV, Svendsen I, Møller BL (1989) Subunit composition of photosystem I and identification of center X as a [4Fe-4S] iron-sulfur cluster. J Biol Chem 264:6929–6934PubMedGoogle Scholar
  23. Sono M, Roach MP, Coulter ED, Dawson JH (1996) Heme-containing oxygenases. Chem Rev 96:2841–2888PubMedCrossRefGoogle Scholar
  24. Tishkov VI, Galkin AG, Fedorchuk VV, Savitsky PA, Rojkova AM, Gieren H, Kula MR (1999) Pilot scale production and isolation of recombinant NAD + - and NADP + -specific formate dehydrogenases. Biotechnol Bioeng 64:187–193PubMedCrossRefGoogle Scholar
  25. Tjus SE, Scheller HV, Andersson B, Møller BL (2001) Active oxygen produced during selective excitation of photosystem I is damaging not only to photosystem I, but also to photosystem II. Plant Physiol 125:2007–2015PubMedCrossRefGoogle Scholar
  26. Udit AK, Hill MG, Gray HB (2006) Electrochemistry of cytochrome P450BM3 in sodium dodecyl sulfate films. Langmuir 22:10854–10857PubMedCrossRefGoogle Scholar
  27. van der Donk WA, Zhao H (2003) Recent developments in pyridine nucleotide regeneration. Curr Opin Biotechnol 14:421–426PubMedCrossRefGoogle Scholar
  28. Wirtz M, Klucik J, Rivera M (2000) Ferredoxin-mediated electrocatalytic dehalogenation of haloalkanes by cytochrome P450(cam). J Am Chem Soc 122:1047–1056CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Kenneth Jensen
    • 1
  • Jonathan B. Johnston
    • 2
  • Paul R. Ortiz de Montellano
    • 2
  • Birger Lindberg Møller
    • 1
  1. 1.Plant Biochemistry Laboratory, Department of Plant Biology and BiotechnologyUniversity of CopenhagenCopenhagen, Frederiksberg CDenmark
  2. 2.Department of Pharmaceutical ChemistryUniversity of California San FranciscoSan FranciscoUSA

Personalised recommendations