Biotechnology Letters

, Volume 34, Issue 2, pp 175–186

Fluorescent proteins in microbial biotechnology—new proteins and new applications

  • Isaac Vizcaino-Caston
  • Chris Wyre
  • Tim W. Overton
Review

Abstract

The recent advances over the past 5 years in the utilisation of fluorescent proteins in microbial biotechnology applications, including recombinant protein production, food processing, and environmental biotechnology, are reviewed. We highlight possible areas where fluorescent proteins currently used in other bioscience disciplines could be adapted for use in biotechnological applications and also outline novel uses for recently developed fluorescent proteins.

Keywords

Biosensor Flow cytometry Green fluorescent protein Protein folding Recombinant protein production Reporter gene 

References

  1. Andersen JB, Sternberg C, Poulsen LK, Bjorn SP, Givskov M, Molin S (1998) New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl Environ Microbiol 64:2240–2246PubMedGoogle Scholar
  2. Aye-Han NN, Ni Q, Zhang J (2009) Fluorescent biosensors for real-time tracking of post-translational modification dynamics. Curr Opin Chem Biol 13:392–397PubMedCrossRefGoogle Scholar
  3. Banerjee S, Kumar J, pte-Deshpande A, Padmanabhan S (2010) A novel prokaryotic vector for identification and selection of recombinants: direct use of the vector for expression studies in E. coli. Microb Cell Fact 9:30PubMedCrossRefGoogle Scholar
  4. Berg J, Hung YP, Yellen G (2009) A genetically encoded fluorescent reporter of ATP:ADP ratio. Nat Methods 6:161–166PubMedCrossRefGoogle Scholar
  5. Bisicchia P, Botella E, Devine KM (2010) Suite of novel vectors for ectopic insertion of GFP, CFP and IYFP transcriptional fusions in single copy at the amyE and bglS loci in Bacillus subtilis. Plasmid 64:143–149PubMedCrossRefGoogle Scholar
  6. Bizzarri R, Serresi M, Luin S, Beltram F (2009) Green fluorescent protein based pH indicators for in vivo use: a review. Anal Bioanal Chem 393:1107–1122PubMedCrossRefGoogle Scholar
  7. Chalova V, Woodward CL, Ricke SC (2006) Application of an Escherichia coli green fluorescent protein-based lysine biosensor under nonsterile conditions and autofluorescence background. Lett Appl Microbiol 42:265–270PubMedCrossRefGoogle Scholar
  8. Chalova VI, Kim WK, Woodward CL, Ricke SC (2007) Quantification of total and bioavailable lysine in feed protein sources by a whole-cell green fluorescent protein growth-based Escherichia coli biosensor. Appl Microbiol Biotechnol 76:91–99PubMedCrossRefGoogle Scholar
  9. Chen J, Zhou J, Bae W, Sanders CK, Nolan JP, Cai H (2008) A yEGFP-based reporter system for high-throughput yeast two-hybrid assay by flow cytometry. Cytometry A 73A:312–320CrossRefGoogle Scholar
  10. Choi CH, DeGuzman JV, Lamont RJ, Yilmaz Ö (2011) Genetic transformation of an obligate anaerobe, P. gingivalis for FMN-green fluorescent protein expression in studying host-microbe interaction. PLoS One 6:e18499PubMedCrossRefGoogle Scholar
  11. Cormack BP, Valdivia RH, Falkow S (1996) FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173:33–38PubMedCrossRefGoogle Scholar
  12. Coutard B, Gagnaire M, Guilhon AA, Berro M, Canaan S, Bignon C (2008) Green fluorescent protein and factorial approach: an effective partnership for screening the soluble expression of recombinant proteins in Escherichia coli. Protein Expr Purif 61:184–190PubMedCrossRefGoogle Scholar
  13. De Giorgi F, Ahmed Z, Bastianutto C, Brini M, Jouaville LS, Marsault R, Murgia M, Pinton P, Pozzan T, Rizzuto R (1999) Targeting GFP to organelles. Methods Cell Biol 58:75–85PubMedGoogle Scholar
  14. Deepthike HU, Tecon R, Van KG, Van der Meer JR, Harms H, Wells M, Short J (2009) Unlike PAHs from Exxon Valdez crude oil, PAHs from Gulf of Alaska coals are not readily bioavailable. Environ Sci Technol 43:5864–5870PubMedCrossRefGoogle Scholar
  15. Delic M, Mattanovich D, Gasser B (2010) Monitoring intracellular redox conditions in the endoplasmic reticulum of living yeasts. FEMS Microbiol Lett 306:61–66PubMedCrossRefGoogle Scholar
  16. Delvigne F, Boxus M, Ingels S, Thonart P (2009) Bioreactor mixing efficiency modulates the activity of a prpoS:GFP reporter gene in E.coli. Microb Cell Fact 8:15PubMedCrossRefGoogle Scholar
  17. Denis-Quanquin S, Lamouroux L, Lougarre A, Maheo S, Saves I, Paquereau L, Demange P, Fournier D (2007) Protein expression from synthetic genes: selection of clones using GFP. J Biotechnol 131:223–230PubMedCrossRefGoogle Scholar
  18. Drepper T, Eggert T, Circolone F, Heck A, Krauss U, Guterl JK, Wendorff M, Losi A, Gartner W, Jaeger KE (2007) Reporter proteins for in vivo fluorescence without oxygen. Nat Biotechnol 25:443–445PubMedCrossRefGoogle Scholar
  19. Drepper T, Huber R, Heck A, Circolone F, Hillmer AK, Buchs J, Jaeger KE (2010) Flavin mononucleotide-based fluorescent reporter proteins outperform green fluorescent protein-like proteins as quantitative in vivo real-time reporters. Appl Environ Microbiol 76:5990–5994PubMedCrossRefGoogle Scholar
  20. Ekman J, Tsitko I, Weber A, Nielsen-LeRoux C, Lereclus D, Salkinoja-Salonen M (2009) Transfer of Bacillus cereus spores from packaging paper into food. J Food Prot 72:2236–2242PubMedGoogle Scholar
  21. Errampalli D, Leung K, Cassidy MB, Kostrzynska M, Blears M, Lee H, Trevors JT (1999) Applications of the green fluorescent protein as a molecular marker in environmental microorganisms. J Microbiol Methods 35:187–199PubMedCrossRefGoogle Scholar
  22. Frommer WB, Davidson MW, Campbell RE (2009) Genetically encoded biosensors based on engineered fluorescent proteins. Chem Soc Rev 38:2833–2841PubMedCrossRefGoogle Scholar
  23. Garcia JR, Cha HJ, Rao G, Marten MR, Bentley WE (2009) Microbial nar-GFP cell sensors reveal oxygen limitations in highly agitated and aerated laboratory-scale fermentors. Microb Cell Fact 8:6PubMedCrossRefGoogle Scholar
  24. Garcia-Fruitos E, Gonzalez-Montalban N, Morell M, Vera A, Ferraz RM, Aris A, Ventura S, Villaverde A (2005) Aggregation as bacterial inclusion bodies does not imply inactivation of enzymes and fluorescent proteins. Microb Cell Fact 4:27PubMedCrossRefGoogle Scholar
  25. Garcia-Fruitos E, Aris A, Villaverde A (2007) Localization of functional polypeptides in bacterial inclusion bodies. Appl Environ Microbiol 73:289–294PubMedCrossRefGoogle Scholar
  26. Giulitti S, Cinquemani C, Spilimbergo S (2011) High pressure gases: role of dynamic intracellular pH in pasteurization. Biotechnol Bioeng 108:1211–1214PubMedCrossRefGoogle Scholar
  27. Hengge-Aronis R (2002) Signal transduction and regulatory mechanisms involved in control of the sigma(S) (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev 66:373–395PubMedCrossRefGoogle Scholar
  28. Herron PM, Gage DJ, Cardon ZG (2010) Micro-scale water potential gradients visualized in soil around plant root tips using microbiosensors. Plant Cell Environ 33:199–210PubMedCrossRefGoogle Scholar
  29. Hillson NJ, Hu P, Andersen GL, Shapiro L (2007) Caulobacter crescentus as a whole-cell uranium biosensor. Appl Environ Microbiol 73:7615–7621PubMedCrossRefGoogle Scholar
  30. Hu Q, Li L, Wang Y, Zhao W, Qi H, Zhuang G (2010) Construction of WCB-11: a novel phiYFP arsenic-resistant whole-cell biosensor. J Environ Sci (China) 22:1469–1474CrossRefGoogle Scholar
  31. Huber R, Ritter D, Hering T, Hillmer AK, Kensy F, Müller C, Wang L, Büchs J (2009) Robo-Lector—a novel platform for automated high-throughput cultivations in microtiter plates with high information content. Microb Cell Fact 8:42PubMedCrossRefGoogle Scholar
  32. Ishii J, Tanaka T, Matsumura S, Tatematsu K, Kuroda S, Ogino C, Fukuda H, Kondo A (2008) Yeast-based fluorescence reporter assay of G protein-coupled receptor signalling for flow cytometric screening: FAR1-disruption recovers loss of episomal plasmid caused by signalling in yeast. J Biochem 143:667–674PubMedCrossRefGoogle Scholar
  33. Ishii J, Izawa K, Matsumura S, Wakamura K, Tanino T, Tanaka T, Ogino C, Fukuda H, Kondo A (2009) A simple and immediate method for simultaneously evaluating expression level and plasmid maintenance in yeast. J Biochem 145:701–708PubMedCrossRefGoogle Scholar
  34. Izawa S, Ikeda K, Miki T, Wakai Y, Inoue Y (2010) Vacuolar morphology of Saccharomyces cerevisiae during the process of wine making and Japanese sake brewing. Appl Microbiol Biotechnol 88:277–282PubMedCrossRefGoogle Scholar
  35. Jackrel ME, Cortajarena AL, Liu TY, Regan L (2010) Screening libraries to identify proteins with desired binding activities using a split-GFP reassembly assay. ACS Chem Biol 5:553–562PubMedCrossRefGoogle Scholar
  36. Japrung D, Chusacultanachai S, Yuvaniyama J, Wilairat P, Yuthavong Y (2005) A simple dual selection for functionally active mutants of Plasmodium falciparum dihydrofolate reductase with improved solubility. Protein Eng Des Sel 18:457–464PubMedCrossRefGoogle Scholar
  37. Jeanson S, Chadoeuf J, Madec MN, Aly S, Floury J, Brocklehurst TF, Lortal S (2011) Spatial distribution of bacterial colonies in a model cheese. Appl Environ Microbiol 77:1493–1500PubMedCrossRefGoogle Scholar
  38. Jones JJ, Bridges AM, Fosberry AP, Gardner S, Lowers RR, Newby RR, James PJ, Hall RM, Jenkins O (2004) Potential of real-time measurement of GFP-fusion proteins. J Biotechnol 109:201–211PubMedCrossRefGoogle Scholar
  39. Kensy F, Zang E, Faulhammer C, Tan RK, Buchs J (2009a) Validation of a high-throughput fermentation system based on online monitoring of biomass and fluorescence in continuously shaken microtiter plates. Microb Cell Fact 8:31PubMedCrossRefGoogle Scholar
  40. Kensy F, Engelbrecht C, Buchs J (2009b) Scale-up from microtiter plate to laboratory fermenter: evaluation by online monitoring techniques of growth and protein expression in Escherichia coli and Hansenula polymorpha fermentations. Microb Cell Fact 8:68PubMedCrossRefGoogle Scholar
  41. Kitagaki H, Shimoi H (2007) Mitochondrial dynamics of yeast during sake brewing. J Biosci Bioeng 104:227–230PubMedCrossRefGoogle Scholar
  42. Kitagaki H, Kato T, Isogai A, Mikami S, Shimoi H (2008) Inhibition of mitochondrial fragmentation during sake brewing causes high malate production in sake yeast. J Biosci Bioeng 105:675–678PubMedCrossRefGoogle Scholar
  43. Koegl M, Uetz P (2007) Improving yeast two-hybrid screening systems. Brief Funct Genomic Proteomic 6:302–312PubMedCrossRefGoogle Scholar
  44. Kroupitski Y, Golberg D, Belausov E, Pinto R, Swartzberg D, Granot D, Sela S (2009) Internalization of Salmonella enterica in leaves is induced by light and involves chemotaxis and penetration through open stomata. Appl Environ Microbiol 75:6076–6086PubMedCrossRefGoogle Scholar
  45. Lagendijk EL, Validov S, Lamers GE, de Weert S, Bloemberg GV (2010) Genetic tools for tagging Gram-negative bacteria with mCherry for visualization in vitro and in natural habitats, biofilm and pathogenicity studies. FEMS Microbiol Lett 305:81–90PubMedCrossRefGoogle Scholar
  46. Lentze N, Auerbach D (2008) The yeast two-hybrid system and its role in drug discovery. Expert Opin Ther Targets 12:505–515PubMedCrossRefGoogle Scholar
  47. Listwan P, Terwilliger TC, Waldo GS (2009) Automated, high-throughput platform for protein solubility screening using a split-GFP system. J Struct Funct Genomics 10:47–55PubMedCrossRefGoogle Scholar
  48. Lobo LA, Smith CJ, Rocha ER (2011) Flavin mononucleotide (FMN)-based fluorescent protein (FbFP) as reporter for gene expression in the anaerobe Bacteroides fragilis. FEMS Microbiol Lett 317:67–74PubMedCrossRefGoogle Scholar
  49. Lohman JR, Remington SJ (2008) Development of a family of redox-sensitive green fluorescent protein indicators for use in relatively oxidizing subcellular environments. Biochemistry 47:8678–8688PubMedCrossRefGoogle Scholar
  50. Malone CL, Boles BR, Lauderdale KJ, Thoendel M, Kavanaugh JS, Horswill AR (2009) Fluorescent reporters for Staphylococcus aureus. J Microbiol Methods 77:251–260PubMedCrossRefGoogle Scholar
  51. Martinez-Alonso M, Garcia-Fruitos E, Villaverde A (2008) Yield, solubility and conformational quality of soluble proteins are not simultaneously favored in recombinant Escherichia coli. Biotechnol Bioeng 101:1353–1358PubMedCrossRefGoogle Scholar
  52. Miesenbock G, De Angelis DA, Rothman JE (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394:192–195PubMedCrossRefGoogle Scholar
  53. Miyabe S, Izawa S, Inoue Y (2001) The Zrc1 is involved in zinc transport system between vacuole and cytosol in Saccharomyces cerevisiae. Biochem Biophys Res Commun 282:79–83PubMedCrossRefGoogle Scholar
  54. Müller-Taubenberger A, Anderson KI (2007) Recent advances using green and red fluorescent protein variants. Appl Microbiol Biotechnol 77:1–12PubMedCrossRefGoogle Scholar
  55. Orij R, Postmus J, Ter BA, Brul S, Smits GJ (2009) In vivo measurement of cytosolic and mitochondrial pH using a pH-sensitive GFP derivative in Saccharomyces cerevisiae reveals a relation between intracellular pH and growth. Microbiology 155:268–278PubMedCrossRefGoogle Scholar
  56. Peternel S, Grdadolnik J, Gaberc-Porekar V, Komel R (2008) Engineering inclusion bodies for non denaturing extraction of functional proteins. Microb Cell Fact 7:34PubMedCrossRefGoogle Scholar
  57. Pilbrough W, Munro TP, Gray P (2009) Intraclonal protein expression heterogeneity in recombinant CHO cells. PLoS One 4:e8432PubMedCrossRefGoogle Scholar
  58. Pinheiro LB, Gibbs MD, Vesey G, Smith JJ, Bergquist PL (2008) Fluorescent reference strains of bacteria by chromosomal integration of a modified green fluorescent protein gene. Appl Microbiol Biotechnol 77:1287–1295PubMedCrossRefGoogle Scholar
  59. Regot S, Macia J, Conde N, Furukawa K, Kjellen J, Peeters T, Hohmann S, de Nadal E, Posas F, Sole R (2011) Distributed biological computation with multicellular engineered networks. Nature 469:207–211PubMedCrossRefGoogle Scholar
  60. Remington SJ (2006) Fluorescent proteins: maturation, photochemistry and photophysics. Curr Opin Struct Biol 16:714–721PubMedCrossRefGoogle Scholar
  61. Roth AH, Dersch P (2010) A novel expression system for intracellular production and purification of recombinant affinity-tagged proteins in Aspergillus niger. Appl Microbiol Biotechnol 86:659–670PubMedCrossRefGoogle Scholar
  62. Scheidle M, Jeude M, Dittrich B, Denter S, Kensy F, Suckow M, Klee D, Buchs J (2010) High-throughput screening of Hansenula polymorpha clones in the batch compared with the controlled-release fed-batch mode on a small scale. FEMS Yeast Res 10:83–92PubMedCrossRefGoogle Scholar
  63. Sevastsyanovich Y, Alfasi S, Overton T, Hall R, Jones J, Hewitt C, Cole J (2009) Exploitation of GFP fusion proteins and stress avoidance as a generic strategy for the production of high-quality recombinant proteins. FEMS Microbiol Lett 299:86–94PubMedCrossRefGoogle Scholar
  64. Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22:1567–1572PubMedCrossRefGoogle Scholar
  65. Shaner NC, Patterson GH, Davidson MW (2007) Advances in fluorescent protein technology. J Cell Sci 120:4247–4260PubMedCrossRefGoogle Scholar
  66. Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59:223–239PubMedCrossRefGoogle Scholar
  67. Siller E, DeZwaan DC, Anderson JF, Freeman BC, Barral JM (2010) Slowing bacterial translation speed enhances eukaryotic protein folding efficiency. J Mol Biol 396:1310–1318PubMedCrossRefGoogle Scholar
  68. Stadlmayr G, Mecklenbräuker A, Rothmüller M, Maurer M, Sauer M, Mattanovich D, Gasser B (2010) Identification and characterisation of novel Pichia pastoris promoters for heterologous protein production. J Biotechnol 150:519–529PubMedCrossRefGoogle Scholar
  69. Stricker J, Cookson S, Bennett MR, Mather WH, Tsimring LS, Hasty J (2008) A fast, robust and tunable synthetic gene oscillator. Nature 456:516–519PubMedCrossRefGoogle Scholar
  70. Talley JL, Wayadande AC, Wasala LP, Gerry AC, Fletcher J, DeSilva U, Gilliland SE (2009) Association of Escherichia coli O157:H7 with filth flies (Muscidae and Calliphoridae) captured in leafy greens fields and experimental transmission of E. coli O157:H7 to spinach leaves by house flies (Diptera: Muscidae). J Food Prot 72:1547–1552PubMedGoogle Scholar
  71. Tamsir A, Tabor JJ, Voigt CA (2011) Robust multicellular computing using genetically encoded NOR gates and chemical ‘wires’. Nature 469:212–215PubMedCrossRefGoogle Scholar
  72. Throndset W, Kim S, Bower B, Lantz S, Kelemen B, Pepsin M, Chow N, Mitchinson C, Ward M (2010a) Flow cytometric sorting of the filamentous fungus Trichoderma reesei for improved strains. Enzyme Microb Technol 47:335–341CrossRefGoogle Scholar
  73. Throndset W, Bower B, Caguiat R, Baldwin T, Ward M (2010b) Isolation of a strain of Trichoderma reesei with improved glucoamylase secretion by flow cytometric sorting. Enzyme Microb Technol 47:342–347CrossRefGoogle Scholar
  74. Tielker D, Eichhof I, Jaeger KE, Ernst JF (2009) Flavin mononucleotide-based fluorescent protein as an oxygen-independent reporter in Candida albicans and Saccharomyces cerevisiae. Eukaryot Cell 8:913–915PubMedCrossRefGoogle Scholar
  75. Valdivia RH, Falkow S (1996) Bacterial genetics by flow cytometry: rapid isolation of Salmonella typhimurium acid-inducible promoters by differential fluorescence induction. Mol Microbiol 22:367–378PubMedCrossRefGoogle Scholar
  76. van Overbeek LS, Franz E, Semenov AV, de Vos OJ, van Bruggen AH (2010) The effect of the native bacterial community structure on the predictability of E. coli O157:H7 survival in manure-amended soil. Lett Appl Microbiol 50:425–430PubMedCrossRefGoogle Scholar
  77. Veetil JV, Jin S, Ye K (2010) A glucose sensor protein for continuous glucose monitoring. Biosens Bioelectron 26:1650–1655PubMedCrossRefGoogle Scholar
  78. Vera A, Gonzalez-Montalban N, Aris A, Villaverde A (2007) The conformational quality of insoluble recombinant proteins is enhanced at low growth temperatures. Biotechnol Bioeng 96:1101–1106PubMedCrossRefGoogle Scholar
  79. Wang H, Nakata E, Hamachi I (2009a) Recent progress in strategies for the creation of protein-based fluorescent biosensors. Chembiochem 10:2560–2577PubMedCrossRefGoogle Scholar
  80. Wang Y, Xuan Y, Zhang P, Jiang X, Ni Z, Tong L, Zhou X, Lin L, Ding J, Zhang Y (2009b) Targeting expression of the catalytic domain of the kinase insert domain receptor (KDR) in the peroxisomes of Pichia pastoris. FEMS Yeast Res 9:732–741PubMedCrossRefGoogle Scholar
  81. Westermann B, Neupert W (2000) Mitochondria-targeted green fluorescent proteins: convenient tools for the study of organelle biogenesis in Saccharomyces cerevisiae. Yeast 16:1421–1427PubMedCrossRefGoogle Scholar
  82. Wilks JC, Slonczewski JL (2007) pH of the cytoplasm and periplasm of Escherichia coli: rapid measurement by green fluorescent protein fluorimetry. J Bacteriol 189:5601–5607PubMedCrossRefGoogle Scholar
  83. Zaslaver A, Bren A, Ronen M, Itzkovitz S, Kikoin I, Shavit S, Liebermeister W, Surette MG, Alon U (2006) A comprehensive library of fluorescent transcriptional reporters for Escherichia coli. Nat Methods 3:623–628PubMedCrossRefGoogle Scholar
  84. Zhang C, Xing XH, Lou K (2005) Rapid detection of a gfp-marked Enterobacter aerogenes under anaerobic conditions by aerobic fluorescence recovery. FEMS Microbiol Lett 249:211–218PubMedCrossRefGoogle Scholar
  85. Zimmer M (2009) GFP: from jellyfish to the Nobel prize and beyond. Chem Soc Rev 38:2823–2832PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Isaac Vizcaino-Caston
    • 1
  • Chris Wyre
    • 1
  • Tim W. Overton
    • 1
  1. 1.Bioengineering, School of Chemical EngineeringUniversity of BirminghamBirminghamUK

Personalised recommendations