Biotechnology Letters

, Volume 34, Issue 1, pp 45–53 | Cite as

Cell recycling during repeated very high gravity bio-ethanol fermentations using the industrial Saccharomyces cerevisiae strain PE-2

  • Francisco B. Pereira
  • Daniel G. Gomes
  • Pedro M. R. Guimarães
  • José A. Teixeira
  • Lucília Domingues
Original Research Paper


A very high gravity (VHG) repeated-batch fermentation system using an industrial strain of Saccharomyces cerevisiae PE-2 (isolated from sugarcane-to-ethanol distillery in Brazil) and mimicking industrially relevant conditions (high inoculation rates and low O2 availability) was successfully operated during fifteen consecutive fermentation cycles, attaining ethanol at 17.1 ± 0.2% (v/v) with a batch productivity of 3.5 ± 0.04 g l−1 h−1. Moreover, this innovative operational strategy (biomass refreshing step) prevented critical decreases on yeast viability levels and promoted high accumulation of intracellular glycerol and trehalose, which can provide an adaptive advantage to yeast cells under harsh industrial environments. This study contributes to the improvement of VHG fermentation processes by exploring an innovative operational strategy that allows attaining very high ethanol titres without a critical decrease of the viability level thus minimizing the production costs due to energy savings during the distillation process.


Bio-ethanol production Industrial strain PE-2 Saccharomyces cerevisiae Repeated-batch system Very high gravity fermentation 



The authors thank COPAM—Companhia Portuguesa de Amidos SA (Portugal) for kindly providing the CSL, and Rosane Schwan (Federal University of Lavras, Brazil) for kindly providing the PE-2 yeast strain. The financial support of Fundação para a Ciência e a Tecnologia (FCT), Portugal, is acknowledged: project ProBioethanol PTDC/BIO/66151/2006, grant SFRH/BD/64776/2009 to F. B. Pereira and grant SFRH/BPD/44328/2008 to P. M. R. Guimarães.


  1. Alexandre H, Ansanay-Galeote V, Dequin S, Blondin B (2001) Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae. FEBS Lett 498:98–103PubMedCrossRefGoogle Scholar
  2. Argueso JL, Carazzolle MF, Mieczkowski PA, Duarte FM, Netto OV, Missawa SK, Galzerani F, Costa GG, Vidal RO, Noronha MF et al (2009) Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production. Genome Res 19:2258–2270PubMedCrossRefGoogle Scholar
  3. Bai FW, Anderson WA, Moo-Young M (2008) Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol Adv 26:89–105PubMedCrossRefGoogle Scholar
  4. Basso LC, de Amorim HV, de Oliveira AJ, Lopes ML (2008) Yeast selection for fuel ethanol production in Brazil. FEMS Yeast Res 8:1155–1163PubMedCrossRefGoogle Scholar
  5. Cahill G, Murray DM, Walsh PK, Donnelly D (2000) Effect of the concentration of propagation wort on yeast cell volume and fermentation performance. J Am Soc Brew Chem 58:14–20Google Scholar
  6. Casey GP, Ingledew WMM (1986) Ethanol tolerance in yeasts. Crit Rev Microbiol 13:219–280PubMedCrossRefGoogle Scholar
  7. Casey GP, Magnus CA, Ingledew WM (1983) High-gravity brewing: nutrient enhanced production of high concentrations of ethanol by brewing yeast. Biotechnol Lett 6:429–434CrossRefGoogle Scholar
  8. Cot M, Loret MO, Francois J, Benbadis L (2007) Physiological behaviour of Saccharomyces cerevisiae in aerated fed-batch fermentation for high level production of bioethanol. FEMS Yeast Res 7:22–32PubMedCrossRefGoogle Scholar
  9. Ferreira JC, Paschoalin VMF, Panek AD, Trugo LC (1997) Comparison of three different methods for trehalose determination in yeast extracts. Food Chem 60:251–254CrossRefGoogle Scholar
  10. Huuskonen A, Markkula T, Vidgren V, Lima L, Mulder L, Geurts W, Walsh M, Londesborough J (2010) Selection from industrial lager yeast strains of variants with improved fermentation performance in very-high-gravity worts. Appl Environ Microbiol 76:1563–1573PubMedCrossRefGoogle Scholar
  11. Kaino T, Takagi H (2008) Gene expression profiles and intracellular contents of stress protectants in Saccharomyces cerevisiae under ethanol and sorbitol stresses. Appl Microbiol Biotechnol 79:273–283PubMedCrossRefGoogle Scholar
  12. Laluce C, Tognolli JO, de Oliveira KF, Souza CS, Morais MR (2009) Optimization of temperature, sugar concentration, and inoculum size to maximize ethanol production without significant decrease in yeast cell viability. Appl Microbiol Biotechnol 83:627–637PubMedCrossRefGoogle Scholar
  13. Michnick S, Roustan JL, Remize F, Barre P, Dequin S (1997) Modulation of glycerol and ethanol yields during alcoholic fermentation in Saccharomyces cerevisiae strains overexpressed or disrupted for GPD1 encoding glycerol 3-phosphate dehydrogenase. Yeast 13:783–793PubMedCrossRefGoogle Scholar
  14. Mills DR (1941) Differential staining of living and dead yeast cells. Food Res 6:361–371Google Scholar
  15. Moonjai N, Verstrepen KJ, Delvaux FR, Derdelinckx G, Verachtert H (2002) The effect of linoleic acid supplementation of cropped yeast on its subsequent fermentation performance and acetate esters. J Inst Brew 108:227–235Google Scholar
  16. Ohno T, Takahashi R (1986) Role of wort aeration in the brewing process. Part 1: oxygen uptake and biosynthesis of lipid by the final yeast. J Inst Brew 92:84–87Google Scholar
  17. Pereira FB, Guimaraes PM, Teixeira JA, Domingues L (2010a) Optimization of low-cost medium for very high gravity ethanol fermentations by Saccharomyces cerevisiae using statistical experimental designs. Bioresour Technol 101:7856–7863CrossRefGoogle Scholar
  18. Pereira FB, Guimaraes PM, Teixeira JA, Domingues L (2010b) Selection of Saccharomyces cerevisiae strains for efficient very high gravity bio-ethanol fermentation processes. Biotechnol Lett 32:1655–1661PubMedCrossRefGoogle Scholar
  19. Pereira FB, Guimarães PM, Teixeira JA, Domingues L (2011) Robust industrial Saccharomyces cerevisiae strains for very high gravity bio-ethanol fermentations. J Biosci Bioeng. doi: 10.1016/j.jbiosc.2011.03.022
  20. Stambuk BU, Dunn B, Alves SL Jr, Duval EH, Sherlock G (2009) Industrial fuel ethanol yeasts contain adaptive copy number changes in genes involved in vitamin B1 and B6 biosynthesis. Genome Res 19:2271–2278PubMedCrossRefGoogle Scholar
  21. Thomas KC, Hynes SH, Jones AM, Ingledew WM (1993) Production of fuel alcohol from wheat by VHG technology-effect of sugar concentration and fermentation temperature. Appl Biochem Biotechnol 43:211–226CrossRefGoogle Scholar
  22. van Hoek P, de Hulster E, van Dijken JP, Pronk JT (2000) Fermentative capacity in high-cell-density fed-batch cultures of baker’s yeast. Biotechnol Bioeng 68:518–523Google Scholar
  23. Verbelen PJ, Saerens SMG, Van Mulders SE, Delvaux F, Delvaux FR (2009a) The role of oxygen in yeast metabolism during high cell density brewery fermentations. Biotechnol Lett 82:1143–1156Google Scholar
  24. Verbelen PJ, Depraetere SA, Winderickx J, Delvaux FF, Delvaux F (2009b) The influence of yeast oxygenation prior to brewery fermentation on yeast metabolism and the oxidative stress response. FEMS Yeast Res 9:226–239PubMedCrossRefGoogle Scholar
  25. Wheals AE, Basso LC, Alves DMG, Amorim HV (1999) Fuel ethanol after 25 years. Trends Biotechnol 17:482–487PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Francisco B. Pereira
    • 1
  • Daniel G. Gomes
    • 1
  • Pedro M. R. Guimarães
    • 1
  • José A. Teixeira
    • 1
  • Lucília Domingues
    • 1
  1. 1.IBB–Institute for Biotechnology and Bioengineering, Centre of Biological EngineeringUniversidade do MinhoBragaPortugal

Personalised recommendations