Advertisement

Biotechnology Letters

, Volume 34, Issue 1, pp 75–79 | Cite as

H2 production from CO, formate or starch using the hyperthermophilic archaeon, Thermococcus onnurineus

  • Seung Seob Bae
  • Tae Wan Kim
  • Hyun Sook Lee
  • Kae Kyoung Kwon
  • Yun Jae Kim
  • Min-Sik Kim
  • Jung-Hyun Lee
  • Sung Gyun KangEmail author
Original Research Paper

Abstract

The hyperthermophilic archaeon, Thermococcus onnurineus, was grown in media supplemented with either CO, formate, or starch. H2 was produced with each substrate with respective maximum rates of 1.55, 3.83 and 2.66 mmol H2/l h. The yields (mol H2/mol substrate) were 0.98, 1 and 3.13, respectively. This microbe is the first example where a single microorganism can grow and produce H2 using CO, formate or starch as substrate.

Keywords

CO Formate H2 production Starch Thermococcus onnurineus 

Notes

Acknowledgments

This work was supported by the Marine and Extreme Genome Research Centre and the Development of Biohydrogen Production Technology using the Hyperthermophilic Archaea program of the Ministry of Land, Transport, and Maritime Affairs in the Republic of South Korea.

References

  1. Bae SS, Kim YJ, Yang SH, Lim JK et al (2006) Thermococcus onnurineus sp. nov., a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent area at the PACMANUS field. J Microbiol Biotechnol 16:1826–1831Google Scholar
  2. Balch WE, Wolfe RS (1976) New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressureized atmosphere. Appl Environ Microbiol 32:781–791PubMedGoogle Scholar
  3. Chou CJ, Jenney FE, Adams MWW, Kelly RM (2008) Hydrogenesis in hyperthermophilic microorganisms: implications for biofuels. Metab Eng 10:394–404PubMedCrossRefGoogle Scholar
  4. Claassen PAM, Van Lier JB, Lopez Contreras AM et al (1999) Utilisation of biomass for the supply of energy carriers. Appl Microbiol Biotechnol 52:741–755CrossRefGoogle Scholar
  5. Das D, Veziroglu TN (2001) Hydrogen production by biological processes: a survey of literature. Int J Hydrogen Energ 26:13–28CrossRefGoogle Scholar
  6. Holden JF, Takai K, Summit M, Bolton S, Zyskowski J, Baross JA (2001) Diversity among three novel groups of hyperthermophilic deep-sea Thermococcus species from three sites in the northeastern Pacific Ocean. FEMS Microbiol Ecol 36:51–60PubMedCrossRefGoogle Scholar
  7. Kadar Z, De Vrije T, Van Noorden GE et al (2004) Yields from glucose, xylose, and paper sludge hydrolysate during hydrogen production by the extreme thermophile Caldicellulosiruptor saccharolyticus. Appl Biochem Biotechnol 114:497–508CrossRefGoogle Scholar
  8. Kanai T, Imanaka H, Nakajima A, Uwamori K et al (2005) Continuous hydrogen production by the hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1. J Biotechnol 116:271–282PubMedCrossRefGoogle Scholar
  9. Kim YJ, Lee HS, Kim ES, Bae SS, Lim JK et al (2010) Formate-driven growth coupled with H2 production. Nature 467:352–355PubMedCrossRefGoogle Scholar
  10. Lee HS, Kang SG, Bae SS, Lim JK et al (2008) The complete genome sequence of Thermococcus onnurineus NA1 reveals a mixed heterotrophic and carboxydotrophic metabolism. J Bacteriol 190:7491–7499PubMedCrossRefGoogle Scholar
  11. Lim JK, Kang SG, Lebedinsky AV, Lee JH, Lee HS (2010) Identification of a novel class of membrane-bound [NiFe]-hydrogenases in Thermococcus onnurineus NA1 by in silico analysis. Appl Environ Microbiol 76:6286–6289PubMedCrossRefGoogle Scholar
  12. Nath K, Das D (2004) Improvement of fermentative hydrogen production: various approaches. Appl Microbiol Biotechnol 65:520–529PubMedCrossRefGoogle Scholar
  13. Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948CrossRefGoogle Scholar
  14. Sapra R, Bagramyan K, Adams MW (2003) A simple energy-conserving system: proton reduction coupled to proton translocation. Proc Natl Acad Sci 100:7545–7550PubMedCrossRefGoogle Scholar
  15. Schicho RN, Ma K, Adams MW, Kelly RM (1993) Bioenergetics of sulfur reduction in the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 175:1823–1830PubMedGoogle Scholar
  16. Sokolova TG, Jeanthon C, Kostrikina NA, Chernyh NA et al (2004) The first evidence of anaerobic CO oxidation coupled with H2 production by a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Extremophiles 8:317–323PubMedCrossRefGoogle Scholar
  17. Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Microbiol Mol Biol Rev 41:100–180Google Scholar
  18. Valdez-Vazquez I, Poggi-Varaldo HM (2009) Hydrogen production by fermentative consortia. Renewable Sustainable Energy Rev 13:1000–1013CrossRefGoogle Scholar
  19. Verhagen MF, Adams MW (2001) Fe-only hydrogenase from Thermotoga maritima. Methods Enzymol 331:216–226PubMedCrossRefGoogle Scholar
  20. Woodward J, Orr M, Cordray K, Greenbaum E (2000) Biotechnology: enzymatic production of biohydrogen. Nature 405:1014–1015PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Seung Seob Bae
    • 1
    • 2
  • Tae Wan Kim
    • 1
    • 2
  • Hyun Sook Lee
    • 1
    • 2
  • Kae Kyoung Kwon
    • 1
    • 2
  • Yun Jae Kim
    • 2
  • Min-Sik Kim
    • 2
  • Jung-Hyun Lee
    • 1
    • 2
  • Sung Gyun Kang
    • 1
    • 2
    Email author
  1. 1.Department of Marine BiotechnologyUniversity of Science and TechnologyDaejeonSouth Korea
  2. 2.Korea Ocean Research and Development InstituteSeoulSouth Korea

Personalised recommendations